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Abstract 

This paper introduces a systematic way to analyze 
fuzzy data in both engineering fields and economics, 
with emphasis on fuzzy engineering economics. The 
approach is statistical in nature, in which fuzzy in-
formation and data are treated as bona fide random 
elements within probability theory. This provides, 
not only a coexistence for randomness and fuzziness 
in the complex task of handling all kinds of uncer-
tainty in real-world problems, but also a statistical 
theory supporting empirical analyses in applications. 
This can also viewed as a complement to two usual 
approaches in the literature, namely, either using 
only fuzzy methods, or using some forms of fuzzifying 
statistics. We will give illustrating and motivating 
important examples, in the area of regression (for 
prediction purposes) with seemingly unobservable 
variables, in which, fuzzy rule-based technology pro-
vides nonlinear models for estimating unobservables 
(from determinants/causal variables), followed by 
statistics with fuzzy data in linear regression models. 
The main contribution of this paper is the rigorous 
formulation of statistics with fuzzy data using con-
tinuous lattice structure of upper semi continuous 
membership functions (random fuzzy closed sets) 
which can be used in a variety of useful applied situa-
tions where fuzziness and randomness coexist. 
 
Keywords: Coarsening schemes, econometrics, engi-
neering economics, fuzzy control, fuzzy logics, fuzzy 
rule bases, fuzzy sets, random sets, random fuzzy sets. 

 
1. Introduction 

 
This paper is about fuzzy technology for econometrics   
 

Corresponding Author: Hung T. Nguyen is with the Department of 
Mathematical Sciences, New Mexico State University, Las Cruces, 
NM (USA). 
E-mail: hunguyen@nmsu.edu 
Songsak Sriboonchitta is with Faculty of Economics, Chiang Mai 
University, Chiang Mai, Thailand 
E-mail: Songsakecon@gmail.com 
Berlin Wu is with the Department of Mathematical Sciences, Nation-
al Chengchi University, Taipei, Taiwan. 
E-mail: Berlin@nccu.edu.tw 
Manuscript received    ; revised   ; accepted  

 
 

in the sense that it can be combined rigorously with an 
appropriate statistical theory to enlarge the domain of 
applicability of econometrics in general and of engi-
neering economics in particular. As such, the paper ad-
dresses both engineers and econometricians. 

More specifically, in one direction, we call the atten-
tion of econometricians to relevant fuzzy materials 
which should be used in econometrics, and in another 
direction, we emphasize, to engineering economists, the 
need to treat fuzzy data properly as random elements in a 
bona fide statistical setting 

There exists a two-way relationship between engi-
neering/physical science and economics/social science. 
Like physical sysyems, economic systems are uncertain 
and dynamical, and as such, econometrics has borrowed 
almost all tools from physical sciences, such as Kalmam 
filter and quantum mechanics (path integral and Hamil-
tonian for options and interest rates, e.g., [1]). In the re-
verse direction, e.g., engineering economics (previously 
known as “Engineering Economy”, [2]) used economic 
theories in its projects. This is so, since engineering is an 
important part of the manufacturing sector of the econ-
omy (more specifically, engineering economics concerns 
the application of economic principles to engineering 
problems). 

While fuzzy technology is successful in engineering, 
such as control (see e.g. [3]; [4]), and pattern recognition 
based on clustering (especially, [5]), it did not enter 
econometric tool box from the “front door”, so to speak. 
Perhaps, a main reason is that econometrics is dominated 
by statistics, and fuzzy technology in engineering seems 
to offer an alternative to statistics rather than a combined 
methodology. Clearly, taking fuzzy data into account is 
beneficial for economic analysis (which, in turn, is bene-
ficial to engineering economics), so that a combined 
methodology of probability and fuzziness is desirable. 
As far as economic analysis is concerned, empirical evi-
dence can only provide indicative conclusions, but not 
necessarily conclusive conclusions. In this spirit, a sta-
tistical theory of inference with fuzzy data seems to be 
what is needed. There exist similar attempts in the liter-
ature, exemplified by, e.g., [6], but, in which, it is “fuzzy 
statistics” rather than “statistics of fuzzy data” (remem-
ber: “fuzzy logic” is not a logic which is fuzzy, but it is a 
logic of fuzzy concepts in natural language). In the 
Fuzzy Engineering Economics community (see, e.g., [7]), 
emphasis seems to be on fuzzy technology alone. The 
paper of [8] on a probabilistic approach to fuzzy engi-
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neering economics only focused on using probability for 
manipulating fuzzy (complex) numbers rather than as a 
theory of statistics for fuzzy data. Elsewhere, research  
focused on the “fuzzy approach to statistical analysis”, 
as exemplified by a special issue of the Journal Compu-
tational Statistics and Data Analysis (2006), although in 
it, [9] were the only ones emphasizing the need to look 
at a “statistical approach to fuzzy data”. Specifically, the 
guest editors of this special issue, [10] wrote “The con-
tribution of Nguyen and Wu focuses on Fuzzy Statistics 
seen as “Statistics with fuzzy data”. In this specific con-
text, statistical data may be point-valued, set-valued or 
fuzzy-set valued observations. Random sets (viewed as 
elements of separable metric spaces) are proposed at the 
appropriate mathematical model for set-valued observa-
tions. Likewise, random fuzzy sets are suitable for ana-
lyzing random fuzzy data. Some issues related to these 
modelization are examined. The proposals stemming 
from this investigation may help in strengthening the 
bases of a sound methodology for the analysis of impre-
cise data. In particular, the notion of “coarsening” is 
thoroughly discussed along with the process of genera-
tion of a membership function from available infor-
mation. 

It is clear that randomness and fuzziness are two dis-
tinct types of uncertainty which often exist simultane-
ously in real-world problems. As such, and as Zadeh has 
emphasized, they should be treated together, rather than 
separately. The question is how? 

But, when do we face situations where both random-
ness and fuzziness appear? Typically, these are situations 
in which the outcomes of random elements (i.e., general 
forms of random quantities whose outcomes could be 
points, vectors, curves, sets or fuzzy sets) of interest are 
linguistic (imprecise to the extent that only fuzzy set 
modeling is appropriate). 

In view of all the above, we will present, in this paper, 
the foundations for a complete theory of statistics for 
supporting fuzzy data analyses for engineering econom-
ics in particular, and for econometrics and engineering in 
general. Our main contributions are twofold: on one 
hand, we exhibit various situations where fuzziness ap-
pears naturally and is subjected to statistical analysis (e.g. 
regression with unobservable covariates), and on the 
other hand, we provide the foundations for statistical 
analysis of fuzzy data using continuous lattice structure 
of fuzzy closed sets. 

The paper is organized as follows. In section 2, we 
recall the essentials of fuzzy sets and logics for econo-
metricians. In section 3, we illustrate how these concepts 
and techniques from the fuzzy theory could help statisti-
cal analyses. Section 4 is devoted somewhat to the re-
verse direction, namely addressing statistical aspects 
which could help engineering economists to validate 

their empirical results. Section 5 is devoted to the main 
contribution of the paper, namely the presentation of a 
statistical theory of fuzzy data. Section 6 summarizes our 
discussions and our main contributions. 

 
2. Essentials of fuzzy technology 

 
While fuzzy technology is well-known in engineering 

circle, it is not so for econometric community. Here is a 
tutorial on the basis of fuzzy technology that we will 
employ in this paper. According to [11], fuzzy concepts 
in a natural language, such as “low” (temperature), “effi-
ciency”, “happiness”, can be modeled mathematically 
for information processing purposes. As we will see, 
fuzzy concepts are usually values of qualitative (linguis-
tic) variables of interest in decision-making (e.g., not 
disabled, partially disabled, fully disabled are “val-
ues”/outcomes of the linguistic variable “disability sta-
tus”). More importantly, fuzzy concepts are used as 
coarsening schemes in human intelligent behavior (e.g., 
in intelligent control). 

Using a familiar procedure in mathematics, namely, as 
far as generalizations are concerned, some equivalences 
of a concept are more suitable for the purpose than oth-
ers (e.g., an equivalent framework for deriving the 
Black-Scholes option pricing formula from PDE is mar-
tingales, allowing extensions to other markets), Zadeh 
defined fuzzy sets (i.e., mathematical objects represent-
ing fuzzy concepts) by extending the range of ordinary 
(crisp) set indicator functions (for a complete theory of 
fuzzy sets and logics, see e.g.,[12]). Let U be a set. A 
subset A ⊆ U is characterized by it indicator function A 
(.): U → {0, 1} (note that we use the same notation A 
for the set and its indicator function, the context will tell 
us clearly which is which!), where A (u) = 1 or 0 ac-
cording to u ∈ A ∈ or u / ∈ A. This equivalent way to 
describe a set brings out the notion of membership of 
elements of U to subsets of U: when A (u) = 1, the ele-
ment u is a member of A, whereas when A (u) = 0, u is 
not a member of A. Here, membership degrees are only 
1 and 0 (there is no partial membership). Extending the 
range {0, 1} to the whole unit interval [0, 1] lead to a 
generalization of crisp sets to fuzzy sets. Specifically, a 
fuzzy subset of U is a function A (.): U → [0, 1] where 
A (u) ∈ [0, 1] is the membership of an elements u ∈ U in 
the underlying fuzzy concept. For example, for � = ��, 
the function �(. ): �� → [0,1] given by 

 

�(�) = �

0               �� � < 20
� − 20

55
     �� 20 ≤ � ≤ 75

1              �� � > 75

 

is a membership function for the fuzzy concept “high 
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income” (where, e.g., 20 means $20, 000, annually). The 

value 
��

��
 ∈ [0, 1] is the degree to which the income of 50 

is compatible with the meaning of “high income”. It is 
not the probability that an income of 50 is high! Fuzzi-
ness is a matter of degree. Membership functions are not 
probability distributions. Note that, partial membership 
is allowed. The notion of partial membership is realistic 
in many situations, such as in coalitional games, where 
players, when joining a coalition, might not necessarily 
commit their full resources (see e.g., [13], [14] and [15]). 
As such, for a fair, say, capital risk allocation, it is nec-
essary to consider fuzzy games, i.e., games in which co-
alitions are fuzzy subsets of the set of players, whose 
membership functions are determined by proportions of 
resources committed. 

Having fuzzy data modeled as fuzzy sets, we can pro-
ceed to manipulate/process them by extending opera-
tions on the underlying set U. This is achieved by the 
well-known extension principle. If � : � × � → �  and 
A, B are fuzzy subsets of U, V, respectively, then �  is 
extended to fuzzy subsets as 

� (�, �)(�) = max
{(�,�):� (�,�)�� }

(�(�) ∧ �(�)) 

where ∧ denotes minimum (and ∨ denotes maximum). 
Note that, in one hand, since any function � (. ) ∶ � →
 [0, 1] can be recovered from its level sets �� =

{� ∈ �: �(�) ≥ �}, � ∈ [0,1]  by �(�) = ∫ ��(�)��,
�

�
 

and on the other hand, manipulations with level sets are 
simpler, the following well-known result (known in the 
literature as Nguyen’s Theorem, see [16], [17], [18]) is 
useful. A necessary and sufficient condition for 

� ���
(�)

, ��
(�)

, … , ��
(�)

� = [� ��(�), �(�), … , �(�)�]� 

where �  : U1 × U2 × ... × Un → V , and �(�) is a 
fuzzy subset on �� , � = 1,2, … , �  

is that for each � ∈  �, 

max
{(��,��,…,��)∈� ��(�)}

[∧���
� �(�)(��)] 

is attained. 
While fuzzy logic connectives, including “implication 

operator” = ⇒ (representing “If... Then...” rules in fuzzy 
technology, see e.g., [3], [4]) are familiar with engineers, 
they appear as tools to suggest (nonlinear) models for 
statistics. This can be seen as follows. A statistical model, 
such as a linear regression model �� = ��� + ��, � =
1,2, . . . , �,  is in fact a collection of “If...Then...” rules, 
since what they mean is that, for each i, the model reads 
“If X is ��  (and � is  �� ), then �  is �� ” (where “is” 
stands for “equal”). This observation allows an extension 
to fuzzy data: when (��, ��), � = 1,2, … , �  are fuzzy  
data (linguistic labels), the “rules” become 
��:"If � is ��, then � is ��" or "�� ⇒ ��" where the con-
nective “If...Then...” is the implication ⇒ in fuzzy logic, 
which is a fuzzy relation on the Cartesian product, say, 

U × V , i.e. �⇒(�, �) is the degree to which � “implies” 
� . In the simplest fuzzy logic system,  �⇒(�, �)  in 
"�� ⇒ ��" can be taken as ��(�) ∧ ��(�). 

In the statistical linear regression, the goal is to ar-
rive at a “prediction formula” from, say, given numerical 
data (��, ��), � = 1,2, … , �. This is achieved by combin-
ing the “rules” �� = ��� + �� by using some method of 
estimation (e.g., least squares, when random variables 
have finite variances) to estimate the parameter � to 
arrive as ����. A counterpart of such a procedure when 
the data (��, ��), � = 1,2, … , � are fuzzy is combining 
the rules "�� ⇒ ��" by the compositional rule of infer-
ence ∨���

� [��(�) ∧ ��(�)]  to obtain the combined 
membership function, where ∨���

� [��(�) ∧ ��(�)]  is 
the degree to which � implies � given the rule base. 
Given a value �, the implied consequence is a fuzzy 
subset of �  given by  � → ∨���

� [��(�) ∧ ��(�)] . The 
important point is this. Fuzzy rule bases play the role of 
statistical models in the presence of fuzzy data. 

Remark: With respect to the “conditional” impli-
cation “� ⇒  �” and its degree of compatibility, used in 
the previous context, it is of course tempting to ask 
whether they can be given a probabilistic flavor? For 
example, for crisp events A, B on some probability space 
(Ω, �, � ),  can we view the degree of "� ⇒ �"  as 
�(�|�)? 

If � ⇒ � = �� ∪ � (material implication), then 
�(� ⇒ �) = �(�� ∪ �) = �(�� ∪ (� ∩ �)) 

= �(��) + �(� ∩ �) = �(��) + �(�|�)�(�)
= �(��) + �(�|�)[1 − �(��)]
= �(�|�) + �(��)[1 − �(�|�)]
= �(�|�) + �(��)�(��|�) ≥ �(�|�) 

with equality holding if and only if �(�� ∩ �) = 0 
or �(�) = 1, a rather trivial case. It is known that there 
is no operation ∇  on the � −  field �  such that 
� (� ∇ �)  =  � (�|�) (see [19]). Thus, the answer is 
no, even for crisp events let alone for fuzzy events (a 
fuzzy event is a fuzzy subset of Ω whose membership 
function is measurable). Therefore, if we insist on 
� (�|�) as the degree for � ⟹  � to be true, we have 
to represent mathematically the rule � ⟹  �  differ-
ently. Since � ⟹  � ∉ �, it could be an object lying 
outside of A for the equation � (� ⟹  �)  =  � (�|�) 
to hold. This is similar to complex numbers. For the so-
lution to this problem, see [19]. 

Fuzzy rules and their fusion are very important for 
reasoning in intelligent systems. Each rule reflects 
common sense knowledge, and will be used (see later) to 
provide models for knowledge acquisition. Just like the 
case of default reasoning in computer science, rules 
could have exceptions (for reasoning with such rules, see 
[20]). For representation of fuzzy information on com-
puter, see [21]. 
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3. Fuzzy technology for statistics 
 

We turn now to the question: how can fuzzy technol-
ogy help statistics? In a sense, we will point out some 
significant contributions of fuzzy theory, outside the en-
gineering fields, to statistics in particular, and to decision 
theory in general. 

Regression analysis is the main tool of statistics for 
investigating relationships between economic variables. 
As statistical theory, based upon probability theory, 
seems to leave no stone unturned in its path, it addresses 
also the important situations where variables (response 
variables, regressors and covariates) could be latent or 
qualitative (see a Text like [22]). However, in this con-
text, there is one stone unturned. It is the case where re-
gressors are seemingly unobservable and need to be “es-
timated” to run the regression. A typical situation is the 
study of the effect of underground economy (u.e.) on 
national economy, recently investigated by [23], and 
[24]. Let Y denote the GDP of a country and X denote 
the size of the u.e. of that country. A simple linear re-
gression model is Y = aX + b + ε. While Y is observable 
(say, yearly), X is not. It is not realistic to make further 
assumptions to proceed as in standard practice! To run 
such a regression, we need to “create” a time series of �. 
How? It is precisely here that fuzzy technology could 
help! But before elaborating on this possibility, let’s 
pause and says few words about this interesting demand. 
Although X is unobservable, we might be able to identi-
fy some main causes of it. Then we need an ingredient to 
infer X, in some fashion, from these observable causes. 
This sounds somewhat like we are in the context of 
causal inference? As emphasized by [25], probability 
(and hence “standard” statistics) is insufficient to handle 
causality, noting that correlation is not causality (e.g., 
“symptoms are associated with diseases”, but “symp-
toms do not cause diseases”), and “Causal inference re-
quires two additional ingredients: a scientific language 
for articulating causal knowledge, and a mathematical 
machinery for processing that knowledge, combining it 
with data and drawing new causal conclusions about the 
phenomenon”. While our problem here is not about 
causal inference, since we assume that some causes of X 
are identified, and we proceed to “estimate” X from 
them. However, fuzzy theory seems to provide the two 
additional ingredients mentioned by Pearl: the “scientific 
language for articulating knowledge” is fuzzy logic in 
the form of fuzzy “if...then...” rules and mathematical 
machinery for processing knowledge” is the composi-
tional rule of inference.  

Important remark. This remark emphasizes a signifi-
cant contribution of fuzzy theory to causal inference that 

both engineers and econometricians should take a closer 
look at it. When considering causality, we face two 
problems: finding the causes of an “effect”, and studying 
the effects of causes of an effect. Causal inference is re-
ferred to the latter. See [26] for an excellent paper on 
causal inference from a statistical viewpoint. More spe-
cifically, causal inference concerns measuring (in a nu-
merical sense) the effects of given causes on an “effect” 
variable. The above fuzzy procedure offers a more real-
istic way for conducting causal inference, even for the 
case where the effect variable is not observable. It does 
so by using (linguistic) coarsening schemes, resulting in 
assessing (rather than “measuring”) causal effects from 
common sense knowledge, without imposing untested 
statistical assumptions. This is a very important issue to 
explore for future research and applications, where fuzzy 
technology could provide a realistic alternative to statis-
tical approach, somewhat in line with Pearl’s view. It 
should be remembered that when we offer an alternative 
(to existing approaches) we need to explain why another 
alternative (e.g., what are its advantages?). In view of the 
state-of-the-art of causal inference, an alternative to car-
ry out causal inference by fuzzy theory should be wel-
come and well-justified. Indeed, as [27] put it “I would 
advise against regarding any one approach or blending 
as a complete solution or algorithm for problems of 
causal inference; the area remains one rich with open 
problems and opportunities for innovation”.  

In the specific case of u.e., causes of u.e. could be 
“taxation”, “unemployment rate” and “corruption index”. 
A typical fuzzy rule is of the form “If taxation is high, 
unemployment rate is low, and corruption index is me-
dium, then the size of u.e. is medium”. Given a fuzzy 
rule base (consisting of a finite set of fuzzy rules), the 
compositional rule of inference allows the derivation, 
from observed causes, the “estimated” size of u.e., ex-
pressed as fuzzy sets. With such “fuzzy estimates” of the 
regressor “size of u.e.”, we then face a linear regression 
model � =  �� +  � +  � with fuzzy data (��, ��), � =
1,2, … , � Note that (statistical) regression with fuzzy 
data is different than conventional “fuzzy regression” in 
engineering literature, in which the model is � =
 �� +  �  with coefficients �, �  being fuzzy sets, � 
non fuzzy, resulting in fuzzy output �. 

Another situation where fuzzifying concepts (rather 
than data) is useful is in financial econometrics. The fol-
lowing example brings out also an advantage of using 
fuzzy methodology in investing economic problems, 
showing that, in some cases, fuzzy theory is really in-
dispensable.  

The capital risk allocation (CRA) is an important 
problem in financial risk management (see, e.g. [15]). 
The most recent approach to the solution of CRA is 
based upon coalitional game theory, since cost functions 
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can be expressed in terms of characteristic functions of 
such games. Unfortunately, the Shapley value [28] can-
not be inside the core of the game for coherent risk 
measures. It was suggested that extending (crisp) coali-
tional games to fuzzy games ([13], [14]) could lead to a 
solution. 

Extending a coalitional game to a fuzzy game is pos-
sible by using the mathematical concept of fuzzy sets. 
Here, it is conceivable that members of a coalition might 
not always commit their full resources when joining a 
coalition. As such, degrees of participation in a coalition 
should be taken into account, for a fair capital risk allo-
cation. When doing so, we actually consider fuzzy coali-
tions, thus, enlarging the coalitional game.  

A similar situation of considering fuzzy data in engi-
neering economic problems is statistical quality control 
(SQC) which should lead to more reliable control charts. 
Observations within the “in-control zone” (e.g., within 
six standard deviations) clearly have different “degrees”, 
and should not be treated as the same. Unlike fuzzy coa-
litions, observations in SQC are then random fuzzy 
(closed) sets which should be subject to statistical analy-
sis. 

4. Econometrics for engineering 
We illustrate in this section several important aspects 

of econometric analysis which seems unfamiliar to en-
gineering economists. These aspects also serve as a 
prelude for extending them to fuzzy random variables. 
Specifically, we illustrate situations in which statistical 
data are sets rather than points in Euclidean spaces. 

 A well-known graphical method in exploratory data 
analysis to test (“informally”) the goodness-of-fit of a 
sample (e.g., that the sample came from a normal distri-
bution) is the Quantile-Quantile plot (QQ plot). Let 
(��, ��, … , ��) be a random sample drawn from a pop-
ulation X with unknown distribution function � . To see 
whether the sample comes from a specific distribution 
��  we compare various quantiles of ��  with corre-
sponding empirical quantiles, i.e., for � ∈  (0, 1), 
compare 

��(��) = inf {� ∈ ℝ: ��(�) ≥ �} 
with ��(��) where the empirical distribution func-

tion is 

��(�|��, ��, … , ��) =
1

�
� 1(����)

�

���

 

Specifically, we plot ��(��)  versus ��(��)  for 
several values of �. Note that, unlike moments, a distri-
bution function is characterized by its quantiles, i.e., can 
be recovered from its quantiles. As such, coincidence of 
quantiles is a good indication for goodnees-of-fit. In the 
QQ plot, the indication of a good fit is detected when the 
QQ plots “hugs” a straight line through the origin at an 
angle of 45 degrees (as often said in the literature, this is 

a “quick and dirty” way of doing statistics!). We have 
just said that such an inspection reveals only an indica-
tive conclusion. It is not a conclusive conclusion, i.e., 
not “rigorous”. Again, this is a good place to remind ap-
plied statisticians about validity of empirical analyses! 
Empirical analyses need to be validated to draw final 
conclusions. How to “validate” the QQ plot? Well, if the 
sample did come from ��, then the QQ plot should con-
verge to a straight line as the sample size increases. Here 
the “target” is a straight line, a subset of ℝ� and the QQ 
plot is a sequence of random subsets of ℝ� (see section 
6). As such, we need to know what we mean by “con-
vergence of a sequence of random sets to another set?”! 
It was [29] who investigated this problem in a formal 
theory of random sets. 

Remark. Historically, while random sets appeared 
naturally in many places, such as stochastic geometry, its 
formal theory was not rigorously established until 1975 
(by [30]). When estimating the “size” (area, volume) of a 
random set, [31] did not really consider a formal concept 
of a random set. This so since the size of a random set 
μ(� ) (where � the Lebesgue measure on ℝ�) is in fact 
a numerical random variable, although it depends on the 
random set � . Without a formal concept of random sets, 
it is not possible to find the distribution of the nonnega-
tive random variable �(� ) which is a function of �. 
The clever result of Robbins is this. As far as the ex-
pected value of �(� ) is concerned, we need much less 
than the distribution of  �(� ) . Specifically, the 
knowledge on the coverage function of the informal 
random set S is sufficient to determine ��(� ),  a 
“weaker” form of information. Note that if S is a confi-
dence interval, which is a random set, (say, at 1 −  � 
confidence level), then �(� ) is its length, and an opti-
mal confidence interval is the one with smallest length 
(maximum precision at a given confidence level). The 
computation of the expected length of a random set of 
the form � =  [0, � ] where � ≥  0 is a random vari-
able is simple: the length of S is � , so that 

��(�) = �� = � �(� > �)�� = � �(�)��
�

�

�

�

 

where 
�(�) = �(� ∈ �) = �(� ∈ [0, �]) = �(� > �) 

is the coverage function of the random set � . The 
Robbins’ formula says that the above formula is in fact 
general: For any random set � on ℝ� , we have  

��(�) = � �(�)��(�)
ℝ�

 

where �(. ): ℝ� → [0,1] is the coverage function of 
�. 

Now, while the ��(��) are deterministic, the ��(��) 
are random (depending upon the sample), and as such 
the points (��(��), ��(��)) for various �, are random 
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points in the plane, forming a random set (of points). 
Since the sample is finite, this random set is a closed 
subset of the plane ℝ�. Note that a straight line in ℝ� is 
also a closed set, and hence we are facing the problem of, 
say, almost sure convergence of random closed sets. 

As statistical quality control (SQC) is within engi-
neering economics, let’s mention the current research in 
SQC. In its most general form, it is about estimating lev-
el sets of (multivariate) probability density functions. 

Current research in Statistical Quality Control (SQC) 
addresses the more realistic statistical models in which 
characteristics of manufacturing products need not fol-
low multivariate normal distributions. In other words, 
the research aims at deriving tolerance regions (leading 
to control charts) in the setting of multivariate, nonpar-
ametric models. This is carried out by recognizing that 
traditional tolerance regions are nothing else than level 
sets of probability density functions. The recent paper by 
[32] brings out the usefulness of using copulas in mod-
ern SQC. The multivariate SQC (see [33]) is essentially 
based on (parametric) normal distributions. 

In the univariate case, Shewhart in 1924 first observed 
that, if the (single) product characteristic is modeled by a 
random variable X (due to its possible variations), then 
we can detect whether it is “out of range” (out-of-control) 
if the new value is far away from its mean μ =  �� by 

3 standard deviation � = ����(�) = ��(� − �)� ,  
by using Chebyshev’s inequality: 

�(|� − �| ≤ ��) ≥ 1 −
1

��
 

For example, for � =  3, 
�(|� − �| ≤ 3�) ≥ 0.8889 

Remark. Using extension of Chebyshev’s inequality 
in higher dimensions (i.e., for random vectors), similar 
assessments can be obtained. If we insist that � is nor-
mal �(�, ��), then the above lower bound is more accu-
rate, namely 

  
�(|� − �| ≤ 3�) ≥ 0.997 

 
so that the interval �� –  3�, � +  3�� could be used 

as a “tolerance” zone for the variations of � . Specifi-
cally, since (� (|� − �|  >  3�) is so small, it is un-
likely that a value of � in |� − � |  >  3� could come 
from � . Of course, false alarms could arise! 

The following observation is essential for considering 
multivariate SQC when traditional multivariate normal 
distribution assumption is dropped.  

If we look at the tolerance interval [� −  3�, � +  3�], 
we realize that it is precisely the set 

{� ∈ ℝ: �(�) ≥ �} 
where 

�(�) =
1

�√2�
exp {−

1

2��
(� − �)�} 

and � = �(� + 3�),  with � + 3�  being a quantile 
of �. 

Thus, for general multivariate (joint) density func-
tion  , a tolerance region is of the form 

{� ∈ ℝ�: �(�) ≥ �} 
is that 

�(�(�) ≥ �� = � 
i.e., the probability that a new observation, say, �� +

1(�), is in the level set is some predetermined �. 
Now, of course, the joint density �  on ℝ�  (e.g., 

when the manufacturing product depends on d (related) 
characteristics) is unknown. As such, the (population) 
“parameter” {� ∈ ℝ�: �(�) ≥ �}, which is a set, needs 
to be estimated (by some set statistics, i.e., random sets). 
Such a set statistic is the statistical tolerance region for 
deriving multivariate control charts. The problem is how 
to estimate the level set �(�) = {� ∈ ℝ�: �(�) ≥ �}? 
Plug-in estimator {� ∈ ℝ�: ��(�) ≥ �}, where ��(�) is 
some nonparametric estimator of � requires lots of an-
alytic assumptions, and might be computational intracta-
ble in high dimensions. An alternative, suggested by [34], 
when instead, some qualitative information is given, 
such as the shape of level sets (e.g., closed convex sets, 
ellipsoids), is as follows. Recall the way extremum esti-
mators in statistics are derived: if a population parameter 
optimizes a theoretical objective function, then a plausi-
ble estimator for it is the statistic optimizing the empiri-
cal counterpart of that objective function. Let � denote 
the Lebesgue measure on ℝ� and consider the signed 

measure (�� − ��)(. ) = ��(. )  on ℬ�ℝ��.  For 

� ∈ ℬ�ℝ��,  writing � = [�(�) ∩ �] ∪ [��(�) ∩ �], 

we have ��(�) ≤ ����(�)�,  so that �(�)  maximizes 
the objective function � → ��(�). The empirical coun-
terpart of ��(. ) is ��,�(. ) = (��� − ��)(. ), so that, a 
plausible estimator of �(�) could be the random set 
statistic ��(�)  maximizing ��,�(�)  over all 

� ∈ � ⊆  ℬ(ℝ�), where � is some specified class of 
Borel sets, such as closed convex sets, ellipsoids. How to 
“solve” this set-function optimization? See, [35], To es-
tablish the consistency of ��(�), we need a formal theo-
ry of random sets (see section 6). 

The set estimation of level sets of a probability density 
function can be used to estimate the density itself (non-
parametrically). Indeed, since  

�(�) = � 1�(�)(�)��
�

�

 

it suffices to take 

��(�) = � 1��(�)(�)��
�

�

 

as an estimator of �(�). It remains of course to show 



 International Journal of Fuzzy Systems, Vol. x, No. y, month and year 

that such an estimator is at least consistent. A formal 
theory of random sets is needed. 

Now, if our observed data are more general than sets, 
namely fuzzy sets, then we face “random fuzzy sets” as 
data which are values of “linguistic variables”. On this 
issue, let’s look back at how statisticians used to handle 
linguistic variables, in the popular tool of linear regres-
sion (see a cook book like [22]). 

Linguistic variables could be intrinsically linguistic 
(e.g., ability in mathematics, skill of workers), i.e., vari-
ables whose values can only be described in linguistic 
terms, or due to coarsening schemes (for more on coars-
ening, see [4]). The second kind of linguistic variables is 
very important in data analysis. An essential aspect of 
human intelligence, say, in making everyday life deci-
sions, is coarsening domains of numerical variables. 
When we cannot guess with precision the temperature at 
some location, we coarsen a domain [a, b] of the variable 
“temperature”, i.e., transforming it into a fuzzy partition, 
such as “very cold , cold, medium, hot, very hot”, in or-
der to obtain a correct, but imprecise, useful information. 
Formally, a fuzzy partition of a set � is a collection 
{��: � =  1, 2, . . . �} of fuzzy subsets of � such that the 
sum of their membership functions is one: ∑ ��(�) =�

���

1, for all � ∈  �. This is clearly a generalization of the 
ordinary concept of a (crisp) partition of a set. This ex-
plains why in statistics we consider linguistic values like 
“very low, low, normal, high, excessive” for the variable 
“unemployment rate” in regression analysis, for example. 
By doing so, we actually transform a quantitative varia-
ble into a fuzzy variable (in the sense that the values of 
the latter are fuzzy sets). But, that transformation, in 
classical statistics, is only for the purpose of classifica-
tion to collect (counting) data, and not viewing these 
linguistic values as data per se.  

Here is an example of using “quantitative indicators” 
in regression with a qualitative predictor. In the regres-
sion of advertising expenditures � (quantitative) on the 
quality of sales management � (qualitative with two 
values “low, high”), the quantitative indicator of � is 

� = �
1 �� �ℎ� ������� �� ����� ���������� �� ℎ��ℎ

0 ��ℎ������
 

Well, how “high” is defined here to obtain the indica-
tor of Y?! Of course, “high” is defuzzified by using some 
threshold. 

What we have in mind when talking about fuzzy data 
is at least twofold. First, even in classical problems as 
above, defuzzification might entail loss of information. 
Is there a better way than sharp defuzzification? e.g., 
some smooth procedures. This is perhaps the main rea-
son in using fuzzy modeling in the newly developed Re-
gression-Discontinuity Analysis, see [36]. 

Secondly, as we will illustrate below, there are im-
portant situations where fuzzy data need to be treated as 

data, i.e., just like a random sample of numerical obser-
vations, so that manipulation, processing of them are 
necessary. This is not considered in classical regression 
with qualitative variables. In fact, that is impossible 
since there is no fuzzy modeling available. 

 
5. How to provide a statistical basis for fuzzy 

data analysis? 
 

As far as the applications of econometrics to engi-
neering economics are concerned, it seems desirable that 
empirical analyses should be placed within statistical 
theory. This is so since we wish to interpret them or 
draw conclusions from them with theoretical justifica-
tions. Specifically, if our data are fuzzy sets obtained at 
random, then we should place them properly within an 
appropriate statistical framework from which logical 
inference and decisions could be made.  

While it is possible to provide directly a statistical set-
ting for fuzzy data, we will start out with the special case 
of (crisp) set data for the benefits of those who are not 
familiar with set-valued observations.  

Statistical observations in standard statistics are points 
or vectors in Euclidean spaces ℝ�, or curves (e.g., stock 
market fluctuations) in infinite dimensional function 
spaces. We have seen that sets as statistical observations 
occur in many practical problems. In view of their dif-
ferent nature (noneuclidean), their statistical setting is 
somewhat unfamiliar to statisticians, let alone econome-
tricians and engineering economists.  

Roughly speaking, a “random set” is a set obtained as 
random. Just like the case of random variables which 
take values in ℝ� to formulate set-valued variables as 
random elements, we need to specify a � − field of 
subsets of their range spaces. Here is the outline of 
Matheron’s theory of random closed sets on Euclidean 
spaces ℝ�.  

The general framework of probability is this. We al-
ways consider an abstract probability space (Ω, �, � ) 
on which all random elements are defined. To specify a 
type of random elements � , we specify a measurable 
space (�, � ) consisting of a set � which is the range 
of the random element � we have in mind, and � a 
suitable � −field of subsets of � (for the domain of the 
probability measures governing the random evolution of 
� , elements of � are events).  

For example, if � =  2� (power set of � ), with � 
being a finite set, i.e., � is the set of all subsets of a 
finite set � , then just take � = power set of 2� since 
probability measures can be defined on such � : simply 
assign �(�)  ∈  [0, 1]  such that ∑ �(�) = 1,�⊆�  and 

define �(. ) on 2��
 by �(�) = ∑ �(�).�∈�   

As for � =  ℝ, an infinite, uncountable set, the situa-
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tion is more delicate. 
The power set of ℝ is too big to define probability 

measures on it. We seek a largest collection � of sub-
sets of ℝ (but strictly contained in the power set of ℝ) 
to be the domain of all probability measures. Inspired by 
measure theory in real analysis, it turns out that there is a 
canonical way of getting such � . We equip ℝ with a 
topology (i.e., declare a collection �  of subsets as 
“open” sets). For ℝ, the canonical topology is the small-
est collection of subsets containing the open intervals 
(�, �). Then take the smallest � −field containing all 
open sets, denoted as B(�) (we also say that it is the 
� −field generated by �). The “canonical” �−field ob-
tained this way is referred to as the Borel �−field asso-
ciated with the topology �. Just to be self-contained, a 
�−field is a collection of subsets, suitable for defining 
probability measures on it. A collection ℬ of subsets 
(events) of a set � is a σ−field if it satisfies the condi-
tions (i) � ∈  ℬ , (ii) If � ∈  ℬ  then its complement 
�� ∈ ℬ, and (iii) For any countable collection of ele-
ments of ℬ, {��, � ≥ 1},∪ ��� �� ∈  ℬ. 

Now, consider � = ℱ�ℝ��, the set of closed subsets 

of ℝ�. We will proceed to equip � with a topology � 
and take � =  ℬ(� ). 

Let ℱ, �, � denote the classes of closed, open and 
compact subsets of ℝ�, respectively. For � ⊆  ℝ�, let 

ℱ� = {� ∈ ℱ: � ∩ � ≠ ∅}, ℱ � = {� ∈ ℱ: � ∩ � = ∅} 
ℱ��,��,…,��

� = ℱ� ∩ ℱ��
∩ ℱ��

∩ … ∩ ℱ��
 

� = {ℱ��,��,…,��

� : � ∈ �, �� ∈ �, � ≠ 0} 

Let � be the topology generated by the base �. This 
topology is called the hit-or-miss topology of ℱ . The 
associated Borel � −field is denoted as ℬ(ℱ)  

Definition. Let (Ω, �, � ) be a probability space. By 
a random closed set on ℝ�, we mean a map � ∶ Ω →
 ℱ which is � −  ℬ(ℱ) − measurable. The probability 
law of � is the probability �� = ����on ℬ(ℱ), i.e., 
for  � ∈ ℬ(ℱ), ��(�) = �(� ∈ �). 

For an elementary exposition on the whole theory of 
random closed sets, the reader can consult Nguyen 
(2006). Here, we just indicate the counterpart of Lebes-
gue-Stieltjes theorem for random closed sets. Observe 
that, if we define � ∶ � →  [0, 1] by  

� (�)  =  � (ℱ� )  =  � (� ∈ ℱ ∶ � ∩  � ≠ ∅} 
then T satisfies the following axioms 

    (1) � (∅)  =  0 
(2) �  is alternating of infinite order, i.e., for any          

     � ≥  2 and ��, ��, … , ��in �, 

�(∩���
� �� ≤ � �(∪�∈� ��)

∅��⊆{�,�,…,�}

 

(3) If �� ↘ � in � then �(��) ↘ �(�)  
Any function � ∶ � →  [0, 1] satisfying the above 

three axioms is called a capacity functional. Capacity 

functionals play the role of distribution functions of 
random variables. The collection of closed sets 
ℱ�  = {� ∈ ℱ ∶ � ∩  � ≠ ∅} plays the role of intervals 
(−∞, � ] on the real line, in the determination of the 
distribution function of a real-valued random 

ble  :��(�) = �(� ≤ �) = ���(−∞, �]�. 
Like Lebesgue-Stieltjes theorem, the following result 

simplifies the search for probability laws governing 
random evolution of random sets. 

Choquet Theorem. If � ∶ � →  [0, 1] is a capacity 
functional, then there exists a unique probability � on 
ℬ(ℱ) such that � (ℱ� )  =  � (�) for all � ∈  �. 

We turn now to random fuzzy (closed) sets. First, a 
fuzzy subset of ℝ�  say, is a function  �(. ) ∶ ℝ� →
 [0, 1]. Since a crisp subset � is a closed set if and only 
if it indicator function 1�(.)  is upper semicontinuous 

(u.s.c.), i.e., for any � ≥  0, its level set {y ∶ 1�(�)  ≥

 α} is a closed set, we say that the fuzzy set �(. ) is a 
fuzzy closed subset of ℝ� if it is u.s.c., i.e., for any 
 ≥  0, {� ∶ �(�) ≥  �} ℱ ∈ ℝ�), the set of closed sub-
sets of ℝ�. We denote by ℱ∗ℝ� the set of fuzzy closed 
subsets of ℝ�. 

How to extend Matheron’s hit-or-miss topology 
to ℱ∗ℝ�? 

Remark. We take this opportunity to say an important 
thing. Fuzzy sets are “new” mathematical objects. If we 
are going to talk about topology, it should be (ordinary) 
topology of fuzzy sets, and not “fuzzy topology”, i.e., a 
“new” concept of topology generalizing ordinary topol-
ogy in mathematics! A kind of “topology” where ordi-
nary neighborhoods of “points” in ℝ� become fuzzy. 
This should be so since the objects under considerations 
are fuzzy sets and not points in ℝ�. This applied also to 
the wrong approach by trying to treat fuzzy data in a 
context of “fuzzy statistics”! Fuzzy statistics should be 
(like fuzzy logics) ordinary statistics of fuzzy data, and 
not “fuzzifying ordinary statistics”! 

Now, again, a direct extension of Matheron’s topology 
for (crisp) closed sets seems difficult. We need an equiv-
alent way of looking at his topology for the purpose of 
extension. Note that this is a “routine” in mathematical 
investigation, as far as extensions of concepts, theories, 
are concerned. This includes the extension of 
Black-Scholes option pricing formula in financial 
econometrics, based on PDE: it is the equivalence in 
terms of martingales which allows extensions. 

Another look at the hit-or-miss topology of closed sets 
is this. If we consider the set containment ⊇ as a partial 
order relation on ℱ , i.e., for �, � ∈ ℱ , we say that � 
is “less informative” than � if � ⊇  � (� contains �, 
the reverse of standard partial order relation among sets), 
then (ℱ , ⊇) happens to be a continuous lattice (see, 
[38]). As such, there is a canonical topology, called 
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Lawson topology, generated by ⊇. Without going into 
technical details, we simply say that this Lawson topol-
ogy is precisely the Matheron topology, see however, 
[37]. Thus, the � − field, for defining random closed 
sets, is the Borel � −field of the Lawson topology. 

Now, on  ℱ∗ℝ�, if we consider the partial order rela-
tion among u.s.c. functions: f is “less” than g if 
� (. )  ≥  �(. ) (as extension of ⊇ among sets), then, 
( ℱ∗ℝ�, ≥ ) is also a continuous lattice, and as such we 
simply take the Borel � −field ℬ(�) of its Lawson to-
pology to define random fuzzy (closed) sets. 

Definition. A random fuzzy (closed) set is then a map 
Ω →   ℱ∗, � − ℬ(�) − measurable. 

For the extension of Choquet theorem to random 
fuzzy sets, see [39]. 

In summary, random fuzzy data are defined as obser-
vations from bona fide random elements, termed random 
fuzzy (closed) sets, in the framework of probability the-
ory, from which theoretical results can be derived lead-
ing to standard statistical inference with fuzzy data. 

 
 

6. Conclusions 
 

This paper focused on engineering economics in which 
we discussed various situations where fuzziness and 
randomness coexist naturally. Special attention is put on 
how fuzzy technology can help the statistical analysis of 
engineering economic problems as exemplified by the 
need to use fuzzy data in problems such as regression 
with seemingly unobservable covariates, statistical qual-
ity control, and regression discontinuity designs in caus-
al inference. Fuzzy rule-based systems, which are useful 
in fuzzy systems designs, provide an additional method 
for handling fuzzy data in engineering economics. The 
rationale and foundations for a statistical theory of fuzzy 
data is provided via the theory of random fuzzy sets 
which is based upon a natural generalization of the 
well-known theory of random sets by exploiting the con-
tinuous lattice structure of membership functions of 
fuzzy closed sets. As a result, the use of fuzzy technolo-
gy in engineering economics is firmly established in a 
rigorous framework. Within such a rigorous formulation 
of random fuzzy sets, fuzzy rule-based systems form an 
addition to the repertoire of statistical tools to investigate 
larger classes of useful applied problems. Developing 
new statistical procedures from random fuzzy sets for 
estimation, testing and prediction will be our future 
work.  
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