English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88613/118155 (75%)
Visitors : 23476923      Online Users : 311
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/98858


    Title: 隨機波動下結構型人壽保險之違約風險分析
    Default Analysis of Structured Life Insurance Policies under Stochastic Volatility
    Authors: 陳毅潔
    Chen, Yi Chieh
    Contributors: 張士傑
    Chang, Shih Chieh
    陳毅潔
    Chen, Yi Chieh
    Keywords: 資產負債表
    現金流量
    解約
    資產配置
    Heston模型
    Blance sheet
    cash flow
    surrender
    asset allocation
    Heston model
    Date: 2016
    Issue Date: 2016-07-11 17:05:16 (UTC+8)
    Abstract: 資本市場之系統性風險加劇時,對於保險公司所持有之標的資產將出現大幅波動,影響保險公司之獲利表現,本研究透過建立資產負債表之隨機模型,檢視系統性風險下對於人壽保險業違約風險之變化。本研究採用Heston (1993)模型來描述標的資產的隨機波動過程,並依據結構型人壽保險之現金流量建立壽險公司之資產負債模型,藉由資產與負債的變化衡量壽險公司違約風險,同時分析影響違約風險之各項因子,包含解約、死亡、保本與清償能力之關聯性。本研究使用違約機率、風險值及條件尾端期望值作為風險衡量指標,經實證分析證明違約風險會隨著解約率的增加而下降,解約費用之設定亦會影響公司之淨值變化,另外,當壽險公司初始資本額愈高,其承保能力愈穩定,則未來違約機率愈低。
    When systematic risk in capital market is increasing, the underlying asset for structured life insurances will fluctuate sharply and affect the profit the performance of insurance companies. In this paper, we survey the variation of default value for life insurance industry under systematic risk. We establish the balance model for insurance companies based on the cash flow of structured life insurance and measure default risk of insurance companies by the changes in assets and liabilities. In addition, we analysis factors affecting default risk, including surrender, death, value at risk and conditional tail expectation as risk measure index. Through empirical analysis, we proved that as the surrender rate rises, the default risk will decrease and the expected equity value is affected by surrender fees. In addition, as the capital of insurance company become higher, its underwriting capacity will be more stable, then the probability of default will be lower.
    Reference: 張士傑,台灣保險市場發展、監理與評論,台灣金融研訓院,2015。
    韓傳祥,金融中波動率的數學問題,數學傳播,卷37,2013。
    F. Black and M. Scoles. The pricing of options and corporate liabilities. Journal of Political Economy, 81:637-654,1973.
    M. J. Brennan and E. S. Schwartz. The pricing of equity-linked life insurance policies with an asset value guarantee. Journal of Financial Economics,3:195-213, 1976.
    D. Brigo and F. Mercurio. Interest Rate Models – Theory and Practice: With Smile, Inflation and Credit. Springer-Verlag, Berlin, second edition, 2006.
    J. Cox, J. Ingersoll, and S. Ross. A theory of the term structure of interest rates. Economertrica,53:385-407,1985.
    T. Gerstner, M. Griebel, M. Holtz, R. Goschnick, and M. Haep. A general asset-liability management model for the efficient simulation of portfolios of life insurance policies. Insurance: Mathematics and Economics, 42:704-716, 2008.
    A. Grosen and P. L. Jorgensen. Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies. Insurance: Mathematics and Economics, 26:37-57,2000.
    S. Heston. A closed-form solutions for options with stochastic volatility. Review of Financial Studies, 6:327-343,1993.
    W. Hsuan and S. C. Chang. Fair insurance guarantee premium : A study of life insurers in Taiwan. In Proceedings at the World Risk and Insurance Economics Congress, Munich, Germany, August 2015.
    J. Hull and A.White. The pricing of options on assets with stochastic volatilites. Jouranl of Finance, 42:281-300, 1987.
    K. Kladivdo. Maximum likelihood estimation of the Cox-Ingersoll-Ross process: the MATLAB implementation. In Technical Computing Prague.working paper,2007.
    M. A. Milevsky and S. E. Posner. The titanic option: valuation of the guaranteed minimum death benefit in variable annuities and mutual funds. Journal of Risk and Insurance, 68: 93-128,2001.
    N. Moodley. The Heston model: A practical approach with matlab code. Master’s thesis, University of the Witwatersrand, Johannesburg, South Africa, 2005.
    W. Poklewski-Koziell. Stochastic volatility models: Calibration, pricing and hedging. Master’s thesis, University of the Witwatersrand, Johannesburg, South Africa, 2012.
    F. Rouah. The Heston Model and its Extensions in Matlab and C#. John Wiley & Sons, Hoboken, N.J.,2013.
    M. Rubinstein. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option. Journal of Finance, 40:455-480,1985.
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    103358010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103358010
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系 ] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback