English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88866/118573 (75%)
Visitors : 23561023      Online Users : 413
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/88457
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/88457


    Title: 關於週期性波包近似值的理論與應用
    On the Theory and Applications of Periodic Wavelet Approximation
    Authors: 鄧起文
    Deng, Qi Wen
    Contributors: 蔡隆義
    Cai, Long Yi
    鄧起文
    Deng, Qi Wen
    Keywords: 波包
    多重解析度分析
    角錐圖解
    快速週期性波包轉換
    Wavelet
    Multiresolution Analysis
    Pyramid Scheme
    Fast Periodic Wavelet Transform
    Date: 1995
    1994
    Issue Date: 2016-04-29 16:00:13 (UTC+8)
    Abstract:   在本篇論文裏,我們將使用所謂的週期化(periodization)的裝置作用於Daubechies' compactly supported wavelets上而得到一族構成L<sup>2</sup>([0,1])和H<sup>s</sup>-periodic (the space of periodic function locally in H<sup>s</sup>)基底的正交的週期性波包(orthonormal periodic wavelets)。然後我們給出了對於一函數的波包近似值的誤差估計(參閱定理6)以及對於週期性邊界值的常微分方程問題的解的波包近似值的誤差估計(參閱定理7)。對於Burger equation的數值解也當作一個應用來討論。
      In this thesis,we shall construct a family of orthonormal periodic wavelets which form a basis of L<sup>2</sup>([0,l]) and H<sup>s</sup>-periodic (the space of periodic functions locally in H<sup>s</sup>) by using a device called periodization ([10,7]) on Daubechies' compactly supported wavelets.We then give the error estimates for the wavelet approximation to a given function (see theorem 6) and to a solution of periodic boundary value problem for ordinary differential equation(see theorem 7). Numerical solution for Burger equation is also discussed as an application.
    摘要
    Contents-----1
    Abstract-----2
    1 Introduction-----3
    2 Multiresolution analysis-----5
      2.1 Multiresolution analysis-----5
      2.2 Examples of orthogonal wavelets-----10
    3 Periodic wavelets-----14
    4 The fast periodic wavelet transform-----18
      4.1 Wavelets with finitely many non-zero filter coefficients-----18
      4.2 Decomposition algorithm-----19
      4.3 Reconstruction algorithm-----22
      4.4 The pyramid scheme-----24
      4.5 Two-dimensional periodic wavelets-----29
    5 Approximation and error estimates-----33
    6 Applications-----37
      6.1 Application to ordinary differential equation with periodic boundary conditions-----37
      6.2 Application to Burgers' equation with periodic boundary conditions-----40
    7 Conclusions-----44
    References-----45
    Appendix-----46
    Description: 碩士
    國立政治大學
    應用數學系
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002003514
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML55View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback