English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 75041/106105 (71%)
造訪人次 : 19435598      線上人數 : 478
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/81243


    題名: SDN OpenFlow Switch上效能評測
    Performance Evaluation of SDN OpenFlow Switch
    作者: 蔡明志
    Tsai, Ming Chih
    貢獻者: 張宏慶
    Jang, Hung Chin
    蔡明志
    Tsai, Ming Chih
    關鍵詞: 軟體定義網路
    SDN
    OpenFlow
    Open vSwitch
    IPv6
    日期: 2015
    上傳時間: 2016-02-03 12:24:55 (UTC+8)
    摘要: SDN軟體定義網路,是一種新的以軟體為基礎的網路架構及技術。最大的特點為將傳統二、三層網路設備的控制功能與設備本身數據轉發功能進行分離。由於分離後的控制功能集中統一管理,且其具有軟體設計的靈活性,因此,網路管理人員對底層設備的資源控制變得更加容易,進而大大提升網路自動化管理能力,並有效解決目前網路系統所面臨的如網路拓樸的靈活性差,規模擴充受限等問題。

    近年來隨著寬頻上網,物聯網,雲端計算,移動裝置等新技術及新業務的快速發展,在愈來愈多各種型態連網裝置快速增加的情況下,同時也使人們對IP位址的需求日增。然而目前IPv4卻無法針對此需求,提供一個相對大量的位址,也因此對於IPv4到IPv6網路的升級有其迫切性與必要性。IPv4過渡到IPv6網路目前提出的方法有三種:Dual Stack、Tunneling以及Translation。Tunneling及Translation皆有其效能上的瓶頸,為過渡期間的應用技術。目前主要推動的技術為Dual Stack,在Dual Stack模式下,可以由IPv4網路逐步演進成IPv4與IPv6共存互通,最後再形成以IPv6為主的網路。現階段愈來愈多的IPv6設備與節點,為順利的連接舊的IPv4與新的IPv6網路,藉由具有Dual Stack能力的SDN交換機網路設備,將是個有效的解決方案,也將使得IPv6網路的管理及升級更具有彈性。SDN、IPv6為現今幾個熱門的研究議題,看似不同領域的電腦相關技術,然而若使上述幾種技術相互連結使用,將使得未來之網路環境更具備可擴充性、可管理性、靈活性與敏捷性。
    為了解SDN交換機上的效能,本論文提出一個測試平台架構。利用Linux系統做為待測網路設備,並在待測網路設備上模擬Bridge、Router、Open vSwitch SDN交換機等不同環境。測試端為Linux系統,並使用Iperf測試軟體,透過對待測網路設備不同模擬環境下發送不同大小的封包做效能測試。實驗中同時也量測IPv4網路協定,以作為和傳統網路效能的比較。另外,也量測了SDN交換機同時在IPv4及IPv6雙協定的負載下,和單獨的IPv4協定或IPv6協定做效能上的差異比較。最後,也模擬同時在多主機下對待測網路設備進行封包的發送與接收,以測試SDN交換機在多主機下的負載狀況。

    經由測量的數據分析,IPv6在Open vSwitch SDN交換機上運行效能幾乎等同於傳統的IPv4,也驗證IPv6在交換機上的可行性。此外,當SDN交換機同時運行在IPv4和IPv6雙協定環境下,在整體效能的表現上和單獨運行單協定相比幾近相同,也證明SDN交換機同時運行在雙協定下的可行性。由多主機負載的實驗數據分析,在以UDP協定做資料傳送時,愈多的主機因為資源的競爭問題愈大外,間接也會造成愈多packet loss。並且對較大的封包,packet loss的問題也愈嚴重,但相對來看,在以TCP協定做資料傳送時,total throughput的瓶頸則決定於網路卡的效能,即效能愈好的網路卡,愈能提升多主機環境下的total throughput。
    Software Defined Network (SDN) is a new software-based network architecture and technique. The main characteristic is to separate the control functions and the data forwarding functions of the traditional layer 2 or layer 3 network devices. Since the separated control functions can be centralized management with software design flexibility, thus network managers can control the underlying resource device easier, which greatly enhances the ability to automate network management as well as effectively resolves the problems confronted by conventional network system, such as lack of network topology flexibility, limited network scalability.

    In recent decades, along with broadband Internet access, Internet of Things, cloud computing, the rapid development of new technologies and the rapid increase of network devices, it has increased the demand for IP address to a great extent. While IPv4 can not meet the current demand to offer a relatively large number of addresses and thus it is urgent and essential to upgrade IPv4 to IPv6 network. Transition from IPv4 to IPv6 network currently is proposed in these three ways which respectively named Dual Stack, Tunneling, and Translation. Tunneling and Translation have their performance bottlenecks and only Dual Stack mode can be gradually evolved from IPv4 to IPv4 and IPv6 coexistence network, eventually toward the IPv6-based network. There are increasing numbers of IPv6 devices and nodes with the aim to connect IPv4 network to IPv6 network, through SDN switch with Dual Stack network which would be an effective solution. It makes the IPv6 network management and maintenance more flexible. IPv6 and SDN are two hot researching issues currently. If they can be linked with each other, it will be more scalable and flexible for the network environment in the future.

    In order to understand the effectiveness of the SDN switch, this paper presents a test platform architecture. Using Linux systems as a Device under Testing, we simulate Bridge, Router, Open vSwitch SDN switch network equipment on it. Test end is Linux system, and Iperf serves as a test software. Through simulation of the Device under Testing in different scenarios, we have performed many tests on different sizes of packets. The experiment also measures IPv4 network protocol and compares with traditional network. In order to compare with the performance of separate IPv4 or IPv6 protocol, the loading of SDN switch running both of IPv4 and IPv6 dual protocol is measured. Finally, simulation on multi-host is tested under Device under Testing in sending and receiving packet which is to test SDN switch under a multi-host loading conditions.

    Through the analysis of the measured data, the performance of IPv6 running on the Open Switch SDN switch is equivalent to that of the traditional IPv4. It also proves the feasibility and efficiency of IPv6 on the switch. In addition, when SDN switch running in IPv4 and IPv6 Dual Stack mode simultaneously, the overall performance is almost exactly the same as single IPv4 or IPv6 protocol, which proves the feasibility of SDN switch in Dual Stack mode. Based on the analysis of multiple-host loading, UDP protocols were used during data transfer. Apart from multi-hosts with more competition for resourcing issue, a packet loss will be aroused indirectly. We observed that larger packets can cause more packet loss. However, with TCP protocols during data transfer, total throughput bottleneck is determined by the effectiveness of the network card. Therefore, the better the effectiveness of the network card is, the higher total throughput can be provided in multi-host environment.
    參考文獻: [1] A. Rostami, T. Jungel, A. Koepsel, H. Woesner, and A. Wolisz. “Oran: Openflow routers for academic networks”, In High Performance Switching and Routing (HPSR), 2012 IEEE 13th International Conference on, pp. 216 -222, Jun. 2012.
    [2] V. Tanyingyong, M. Hidell, P. Sjodin. “Improving PC-based OpenFlow switching performance”, In Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, pp. 13, Oct. 2010.
    [3] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. “Openflow switching: Data plane performance”, In Communications (ICC), 2010 IEEE International Conference, pp. 1-5, May 2010.
    [4] Open vSwitch, “Production Quality, Multilayer Open Virtual Switch”, http://openvswitch.org
    [5] A. Gelberger, N. Yemini, R. Giladi. “Performance Analysis of Software-Defined Networking (SDN)”, In Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st International Symposium, pp. 389-393, Aug. 2013.
    [6] Z.K. Khattak, M. Awais, A. Iqbal. “Performance Evaluation of OpenDaylight SDN Controller”, In Parallel and Distributed Systems (ICPADS), 2014 20th IEEE International Conference, pp. 671-676, Dec. 2014.
    [7] M. Jarschel, F. Lehrieder, Z. Magyari, R. Pries. “A Flexible OpenFlow-Controller Benchmark”, In Software Defined Networking (EWSDN), 2012 European Workshop, pp. 48-53, Oct. 2012.
    [8] Iperf, “The network bandwidth measurement tool”, https://iperf.fr
    [9] C. Elliott. “GENI: Opening Up New Classes of Experiments in Global Networking”, IEEE Internet Computing, Vol.14, No.1, pages 39-42, 2010.
    [10] B. Chun, D. Culler, T. Roscoe, et al. “PlanetLab: an overlay testbed for broad-coverage services”, ACM SIGCOMM Computer Communication Review, 33(3), pp. 3-12, 2003.
    [11] A. Gavras, A. Karila, S. Fdida, et al. “Future Internet research and Experimentation: The FIRE Initiative”, ACM SIGCOMM Computer Communication Review, 37(3), pp. 89-92, 2007.
    [12] N. McKeown, T. Anderson, H. Balakrishnan, et al. “OpenFlow: Enabling Innovation in Campus Networks”, ACM SIGCOMM Computer Communication Review, Vol. 38, pp. 69–74, 2008.
    [13] Software-Defined Networking: The New Norm for Networks, Apr. 13, 2012, https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
    [14] OpenFlow Switch Specification 1.1.0 Oct. 15, 2013, https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf
    [15] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. “OFLOPS: An open framework for OpenFlow switch evaluation”, In Proceedings of PAM, Mar. 2012.
    [16] Ofpeck, http://archive.openflow.org/wk/index.php/Ofpeck
    [17] M. Jarschel, S. Oechsner, D. Schlosser, et al. “Modeling and Performance Evaluation of an OpenFlow Architecture”, In 23rd International Teletraffic Congress (ITC 2011), San Francisco, CA, USA, pp. 1-7, Sep. 2011.
    [18] C. Rotsos, G. Antichi, M. Bruyere, et al. “An Open Testing Framework for Next-Generation Openflow Switches”, In Software Defined Networks (EWSDN), 2014 Third European Workshop, pp. 127-128, Sep. 2014.
    [19] G. Araniti, J. Cosmas, A. Iera, et al. “OpenFlow over Wireless Networks: Performance Analysis”, In Broadband Multimedia Systems and Broadcasting (BMSB), 2014 IEEE International Symposium, pp. 1-5, Jun. 2014.
    [20] P.M. Mohan, D.M. Divakaran, M. Gurusamy. “Performance Study of TCP Flows with QoS-supported OpenFlow in Data Center Networks”, In Networks (ICON), 2013 19th IEEE International Conference, pp. 1-6, Dec. 2013.
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    101971021
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0101971021
    資料類型: thesis
    顯示於類別:[資訊科學系碩士在職專班] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    102101.pdf1246KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋