English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88668/118332 (75%)
Visitors : 23510883      Online Users : 39
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/71238


    Title: Length Encoded Secondary Structure Profile for Remote Homologous Protein Detection
    Authors: 鄭至甫
    Jeng, Jyh‐Fu
    Contributors: 科管智財所
    Keywords: protein sequence comparison;secondary structure element alignment;dynamic programming;length encoded profile;protein folding
    Date: 2009
    Issue Date: 2014-11-07 16:02:31 (UTC+8)
    Abstract: Protein data has an explosive increasing rate both in volume and diversity, yet many of its structures remain unresolved, as well their functions remain to be identified. The conventional sequence alignment tools are insufficient in remote homology detection, while the current structural alignment tools would encounter the difficulties for proteins of unresolved structure. Here, we aimed to overcome the combination of two major obstacles for detecting remote homologous proteins: proteins with unresolved structure, and proteins of low sequence identity but high structural similarity. We proposed a novel method for improving the performance of protein matching problem, especially for mining remote homologous proteins. In this study, existing secondary structure prediction techniques were applied to provide the locations of secondary structure elements of proteins. The proposed LESS (Length Encoded Secondary Structure) profile was then constructed for segment-based similarity comparison in parallel computing. As compared to a conventional residue-based sequence alignment tool, detection of remote protein homologies through LESS profile is favourable in terms of speed and high sequence diversity, and its accuracy and performance can improve the deficiencies of the traditional primary sequence alignment methodology. This method may further support biologists in protein folding, evolution, and function prediction.
    Relation: Lecture Notes in Computer Science, 5574, 1-11
    Data Type: article
    Appears in Collections:[科技管理與智慧財產研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1-11.pdf928KbAdobe PDF651View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback