English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88613/118155 (75%)
Visitors : 23474593      Online Users : 277
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/67896
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/67896

    Title: SKF 83959對時距有關的操作式制約行為之影響效果及其神經機制
    The Effects of SKF 83959 on Time-Based Operant Behaviors and the Underlying Neural Mechanisms
    Authors: 劉珮珮
    Contributors: 廖瑞銘
    Keywords: 多巴胺受體
    D1-D2 雜二聚體
    SKF 83959
    FI 30秒作業
    DRL 10秒作業
    dopamine receptor
    D1-D2 heteromer
    SKF 83959
    operant behaviors
    FI 30 sec schedule
    DRL 10 sec schedule
    Date: 2013
    Issue Date: 2014-07-29 16:10:33 (UTC+8)
    Abstract: 近年來與多巴胺功能相關的研究,除探討各型多巴胺受體引發細胞內訊息傳遞機制,亦開始檢測其次級受體之間如何互動及其功能作用為何。近期研究在大腦中的紋狀體發現了由第一型多巴胺受體(D1R)與第二型多巴胺受體(D2R)所共同組成的雜二聚體(heterodimer),其活化會激發一連串有別於傳統多巴胺傳導的訊息傳遞路徑,其中包括經磷脂酶C調控的磷酸肌醇之水解,以及後續的細胞內鈣離子釋放。目前,此D1-D2 雜二聚體在活體(in vivo)層級的功能不明,仍尚待釐清。因此,本研究以一個屬於D1-D2 雜二聚體致效劑的SKF 83959藥物,檢測其對大鼠於兩項與時距有關的操作式制約行為表現(FI 30-s與DRL 10-s)和自發性活動量之影響,並測量四個大腦多巴胺相關區域的特定蛋白質表現受此藥物行為作用之影響。本研究結果發現,隨著SKF 83959藥物處理的劑量增加,大鼠於FI 30-s以及DRL 10-s作業上的反應率受到了顯著的降低,然而自發性活動量並未受到藥物效果影響。此項結果顯示SKF 83959可能對獲取酬賞物相關的內在動機歷程有影響,而不是因藥物引起運動失能之效。在生化測試蛋白質表現量的結果,SKF 83959對背側紋狀體以及伏隔核中的pCaMKII、PKA、及pCREB引發了較明顯的蛋白質表現量變化,在前額葉與海馬迴則未有此效。本研究另外嘗試藉由藥理拮抗的實驗,檢測多巴胺受器拮抗劑是否能反轉SKF 83959藥物對行為表現。實驗結果大致顯示單獨施打SCH 23390以及共同施打SCH 23390與eticlopride的前處理,無法反轉SKF83959對於操作式制約行為表現的影響;然而,低劑量的eticlopride對回復SKF 83959所引發的低反應率有部份藥理反轉的效果。綜合以上結果,SKF 83959會有不等程度的影響本研究所採之兩種時距有關的操作式制約行為,其可能涉及大腦紋狀體內CaMKII/CREB的生化作用。未來研究可考慮直接操弄細胞內蛋白質的表現量,或者觀測D1-D2 雜二聚體於活體內的活動,以提供更多關於此D1-D2 雜二聚體參與個體的行為功能與其相關神經機制。
    As the functions and signaling mechanisms of dopamine (DA) receptor subtypes remain popular topics of research, recent studies have also begun to investigate the interactions between different subtypes of receptors. The formation of DA D1-D2 receptor complexes was discovered in the striatum, whose activation leads to a novel signaling pathway via phospholipase C-mediated phosphoinositide hydrolysis, followed by intracellular calcium release. As the in vivo functional role of this D1-D2 receptor heteromer remains to be elucidated, the present study investigated the effects of SKF 83959, a proposed D1-D2 heteromer-selective agonist, on the performance of schedule-controlled behaviors (FI 30-s and DRL 10-s), locomotor activity, and the expression of related proteins in four terminals of the mesocorticolimbic DA system, which included the prefrontal cortex (PFC), dorsal striatum (DS), nucleus accumbens (NAc), and dorsal hippocampus. The administration of SKF 83959 was found to reduce the response rates of FI 30-s and DRL 10-s in a dose-dependent manner, whereas the locomotor activity was not affected. This suggests that SKF 83959 may have affected the processes of intrinsic motivation to obtain the reinforcers, rather than motor control. In respective to protein expression, SKF 83959 induced prominent changes in the levels of pCaMKII, PKA, and pCREB in the DS and NAc relative to the PFC and hippocampus. Experiments of pharmacological antagonism were conducted in attempts to reverse the behavioral effects of SKF 83959. The results showed that the pretreatments of SCH 23390 alone and SCH 23390 combined with eticlopride did not reverse the effects of SKF 83959 on operant behaviors. However, low dose eticlopride appeared to have a partial effect in restoring the decline in operant response rates by SKF 83959. Together, the current data showed that SKF 83959 altered the time-based operant behaviors tested to different degrees, possibly via its influence on CaMKII-CREB signaling in the NAc. Future studies that manipulate the activation of intracellular proteins or quantify the levels of D1-D2 heteromer activation may provide more information regarding the in vivo activation mechanisms of D1-D2 heteromers.
    Reference: Aberman, J. E., & Salamone, J. D. (1999). Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience, 92, 545-552.
    Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorder. Trends in Neurosciences, 12, 366-375.
    Andringa, G., Drukarch, B., Leysen, J. E., Cools, A. R., & Stoof, J. C. (1999). The alleged dopamine D1 receptor agonist SKF 83959 is a dopamine D1 receptor antagonist in primate cells and interacts with other receptors. European Journal of Pharmacology, 364, 33-41.
    Arnt, J., Hyttel, J., & Sanchez, C. (1992). Partial and full dopamine D1 receptor agonists in mice and rats: Relation between behavioural effects and stimulation of adenylate cyclase activity in vitro. European Journal of Pharmacology, 213, 259-267.
    Baker, S. C., Rogers, R. D., Owen, A. M., Frith, C. D., Dolan, R. J., Frackowiak, R. S. J., & Robbins, T. W. (1996). Neural systems engaged by planning: A PET study of the Tower of London task. Neuropsychologia, 34, 515-526.
    Baldwin, A. E., Sadeghian, K., Holahan, M. R., & Kelley, A. E. (2002). Appetitive instrumental learning is impaired by inhibition of cAMP-dependent protein kinase within the nucleus accumbens. Neurobiology of Learning and Memory, 77, 44-62.
    Balleine, B. W., Delgado, M. R., Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. The Journal of Neuroscience, 27, 8161-8165.
    Barrett, A. C., Miller, J. R., Dohrmann, J. M., & Caine, S. B. (2004). Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology, 47, 256-273.
    Baum, W. M. (1993). Performances on ratio and interval schedules of reinforcement: Data and theory. Journal of the Experimental Analysis of Behavior, 59, 245-264.
    Beninger, R. J., & Gerdjikov, T. V. (2004). The role of signaling molecules in reward-related incentive learning. Neurotoxicity Research, 6, 91-104.
    Beninger, R. J., & Miller, R. (1998). Dopamine D1-like receptors and reward-related incentive learning. Neuroscience and Biobehavioral Reviews, 22, 335-345.
    Bertran-Gonzalez, J., Herve, D., Girault, J., & Valjent, E. (2010). What is the degree of segregation between striatonigral and striatopallidal projections? Frontiers in Neuroanatomy, 4, 1-9.
    Branch, M. N. (1984). Rate dependency, behavioral mechanisms, and behavioral pharmacology. Journal of the Experimental Analysis of Behavior, 42, 511-522.
    Braun, A. R., & Chase, T. N. (1986). Obligatory D-1/D-2 receptor interaction in the generation of dopamine agonist related behaviors. European Journal of Pharmacology, 131, 301-306.
    Caine, S. B., & Koob, G. F. (1994). Effects of mesolimbic dopamine depletion on responding maintained by cocaine and food. Journal of the Experimental Analysis of Behavior, 61, 213-221.
    Carlezon, W. A., Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends in Neurosciences, 28, 436-445.
    Carlsson, A., Lindqvist, M., & Magnusson, T. (1957). 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180, 1200.
    Carlsson, A., Lindqvist, M., Magnusson, T., & Waldeck, B. (1958). On the presence of 3-hydroxytyramine in brain. Science, 127, 471.
    Castro, R., Abreu, P., Calzadilla, C. H., & Rodriguez, M. (1985). Increased or decreased locomotor response in rats following repeated administration of apomorphine depends on dosage interval. Psychopharmacology, 85, 333-339.
    Chance, P. (1979). Learning and behavior. Belmont, CA: Wadsworth Publishing Company, Inc.
    Chang, Y. H., Liao, R. M., Lan, C. H., & Shen, Y. L. (2000). Operant performance following a tail-pinch in the rat: Effects of d-amphetamine. Chinese Journal of Physiology, 43, 105-111.
    Chausmer, A., & Ettenberg, A. (1999). Intraaccumbens raclopride attenuates amphetamine-induced locomotion, but fails to prevent the response-reinstating properties of food reinforcement. Pharmacology, Biochemistry and Behavior, 62, 299-305.
    Cheng, R. K., & Liao, R. M. (2007). Dopamine receptor antagonists reverse amphetamine-induced behavioural alteration on a differential reinforcement for low-rate (DRL) operant task in the rat. Chinese Journal of Physiology, 50, 77-88.
    Cheung, T. H. C., Bezzina, G., Asgari, K., Body, S., Fone, K. C. F., Bradshaw, C. M., & Szabadi, E. (2006). Evidence for a role of D1 dopamine receptors in d-amphetamine’s effect on timing behaviour in the free-operant psychophysical procedure. Psychopharmacology, 185, 378-388.
    Chiang, F. K. (2006). Functions of the Habenula: Measured by operant conditioned behaviour based on temporal contingency. (Unpublished master’s thesis). National Chengchi University, Taipei, Taiwan.
    Chun, L. S., Free, R. B., Doyle, T. B., Huang, X. P., Rankin, M. L., & Sibley, D. R. (2013). D1-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms. Molecular Pharmacology, 84, 190-200.
    Chung, S. H., & Neuringer, A. J. (1967). Control of responding by a percentage reinforcement schedule. Psychonomic Science, 8, 25-26.
    Clark, C. V. H., & Isaacson, R. L. (1965). Effect of bilateral hippocampal ablation on DRL performance. Journal of Comparative and Physiological Psychology, 59, 137-140.
    Cole, S. O. (1978). Brain mechanisms of amphetamine-induced anorexia, locomotion, and stereotypy: A review. Neuroscience and Biobehavioral Reviews, 2, 89-100.
    Collins, L. E., Galtieri, D. J., Collins, P., Jones, S. K., Port, R. G., Paul, N. E., . . . Salamone, J. D. (2010). Interactions between adenosine and dopamine receptor antagonists with different selectivity profiles: Effects on locomotor activity. Behavioral Brain Research, 211, 148-155.
    Cools, A. R., Lubbers, L., Van Oosten, R. V., & Andringa, G. (2002). SKF 83959 is an antagonist of dopamine D1-like receptors in the prefrontal cortex and nucleus accumbens: A key to its antiparkinsonian effect in animals? Neuropharmacology, 42, 237-245.
    Cory-Slechta, D. A., Pazmino, R., & Bare, C. (1997). The critical role of nucleus accumbens dopamine systems in the mediation of fixed interval schedule-controlled operant behavior. Brain Research, 764, 253-256.
    Cousins, M. S., Trevitt, J., Atherton, A., & Salamone, J. D. (1999). Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: A microdialysis and behavioral investigation. Neuroscience, 91, 925-934.
    Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7, 415-423.
    Dash, P. K., Karl, K. A., Colicos, M. A., Prywes, R., & Kandel, E. R. (1991). cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 88, 5061-5065.
    De Oliveira, L., & Graeff, F. G. (1972). Comparison between the effects of apomorphine and amphetamine on operant behavior. European Journal of Pharmacology, 18, 159-165.
    Desai, R. I., Terry, P., & Katz, J. L. (2005). A comparison of the locomotor stimulant effects of D1-like receptor agonists in mice. Pharmaology, Biochemistry and Behavior, 81, 843-848.
    Deumens, R., Blokland, A., & Prickaerts, J. (2002). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Experimental Neurology, 175, 303-317.
    Deveney, A. M., & Waddington, J. L. (1995). Pharmacological characterization of behavioural responses to SK&F 83959 in relation to ‘D1-like’ dopamine receptors not linked to adenylyl cyclase. British Journal of Pharmacology, 116, 2120-2126.
    Dews, P. B. (1955). Studies on behavior: I. Differential sensitivity to pentobarbital of pecking performance in pigeons depending on the schedule of reward. The Journal of Pharmacology and Experimental Therapeutics, 113, 393-401.
    Downes, R. P., & Waddington, J. L. (1993). Grooming and vacuous chewing induced by SK&F 83959, an agonist of dopamine ‘D1-like’ receptors that inhibits dopamine-sensitive adenylyl cyclase. European Journal of Pharmacology, 234, 135-136.
    Drew, M. R., Fairhurst, S., Malapani, C., Horvitz, J. C., & Balsam, P. D. (2003). Effects of dopamine antagonists on the timing of two intervals. Pharmacology Biochemistry and Behavior, 75, 9-15.
    Drew, M. R., Simpson, E. H., Kellendonk, C., Herzberg, W. G., Lipatova, O., Fairhurst, S., . . . Balsam, P. D. (2007). Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. The Journal of Neuroscience, 27, 7731-7739.
    Eilam, D., & Szechtman, H. (1989). Biphasic effect of D-2 agonist quinpirole on locomotion and movements. European Journal of Pharmacology, 161, 151-157.
    Felton, M., & Lyon, D. O. (1966). The post-reinforcement pause. Journal of the Experimental Analysis of Behavior, 9, 131-134.
    Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement. New York: Appleton-century-crofts, Inc.
    Fibiger, H. C. (1978). Drugs and reinforcement mechanisms: A critical review of the catecholamine theory. Annual Review of Pharmacology and Toxicology, 18, 37-56.
    Fink, C. C., & Meyer, T. (2002). Molecular mechanisms of CaMKII activation in neuronal plasticity. Current Opinion in Neurobiology, 12, 293-299.
    Fletcher, G. H., & Starr, M. S. (1985). SKF 38393 and apomorphine modify locomotion and exploration in rats placed on a holeboard by separate actions at dopamine D-1 and D-2 receptors. European Journal of Pharmacology, 117, 381-385.
    Fowler, S. C., & Liou, J. R. (1998). Haloperidol, raclopride, and eticlopride induce microcatalepsy during operant performance in rats, but clozapine and SCH 23390 do not. Psychopharmacology, 140, 81-90.
    Frederick, D. L., & Allen, J. D. (1996). Effects of selective dopamine D1- and D2-agonists and antagonists on timing performance in rats. Pharmacology Biochemistry and Behavior, 53, 759-764.
    George, S. R., & O’Dowd, B. F. (2007). A novel dopamine receptor signaling unit in brain: Heterooligomers of D1 and D2 dopamine receptors. The Scientific World Journal, 7, 58-63.
    Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., Jr., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250, 1429-1432.
    Gibbon, J., Malapani, C., Dale, C. L., & Gallistel, C. (1997). Toward a neurobiology of temporal cognition: Advances and challenges. Current Opinion in Neurobiology, 7, 170-184.
    Gigante, E. D., Santerre, J. L., Carter, J. M., & Werner, D. F. (2014). Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure. Alcohol, 48, 463-470.
    Gnanalingham, K. K., Hunter, A. J., Jenner, P., & Marsden, C. D. (1995). Stimulation of adenylate cyclase activity by benzazepine D-1 dopamine agonists with varying efficacies in the 6-hydroxydopamine lesioned rat – relationship to circling behaviour. Biochemical Pharmacology, 49, 1185-1193.
    Gonzalez, G. A., & Montminy, M. R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell, 59, 675-680.
    Greengard, P., Allen, P. B., & Nairn, A. C. (1999). Beyond the dopamine receptor: The DARPP-32/protein phosphatase-1 cascade. Neuron, 23, 435-447.
    Halberda, J. P., Middaugh, L. D., Gard, B. E., & Jackson, B. P. (1997). DAD1- and DAD2-like agonist effects on motor activity of C57 mice: Differences compared to rats. Synapse, 26, 81-92.
    Hasbi, A., O’Dowd, B. F., & George, S. R. (2010). Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms. Current Opinion in Pharmacology, 10, 93-99.
    Hasbi, A., O’Dowd, B. F., & George, S. R. (2011). Dopamine D1-D2 receptor heteromer signaling pathway in the brain: Emerging physiological relevance. Molecular Brain, 4, 1-6.
    Hernandez, L., & Hoebel, B. G. (1988). Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sciences, 42, 1705-1712.
    Hersch, S. M., Ciliax, B. J., Gutekunst, C. A., Rees, H. D., Heilman, C. J., Yung, K. K. L., . . . Levey, A. I. (1995). Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. The Journal of Neuroscience, 15, 5222-5237.
    Hillegaart, V., & Ahlenius, S. (1987). Effects of raclopride on exploratory locomotor activity, treadmill locomotion, conditioned avoidance behavior and catalepsy in rats: Behavioral profile comparisons between raclopride, haloperidol and preclamol. Basic and Clinical Pharmacology and Toxicology, 60, 350-354.
    Hoffman, D. C., & Beninger, R. J. (1985). The D1 dopamine receptor antagonist, SCH 23390 reduces locomotor activity and rearing in rats. Pharmacology, Biochemistry and Behavior, 22, 341-342.
    Hoffman, D. C., & Wise, R. A. (1992). Locomotor-activating effects of the D2 agonist bromocriptine show environment-specific sensitization following repeated injections. Psychopharmacology, 107, 277-284.
    Kebabian, J. W., & Calne, D. B. (1979). Multiple receptors for dopamine. Nature, 277, 93-96.
    Keefe, K. A., & Gerfen, C. R. (1995). D1-D2 dopamine receptor synergy in striatum: Effects of intrastriatal infusions of dopamine agonists and antagonists on immediate early gene expression. Neuroscience, 66, 903-913.
    Khroyan, T. V., Barrett-Larimore, R. L., Rowlett, J. K., & Spealman, R. D. (2000). Dopamine D1- and D2-like receptor mechanisms in relapse to cocaine-seeking behavior: Effects of selective antagonists and agonists. The Journal of Pharmacology and Experimental Therapeutics, 294, 680-687.
    Kish, S. J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease: Pathophysiologic and clinical implications. The New England Journal of Medicine, 318, 876-880.
    Larson, E. B., Graham, D. L., Arzaga, R. R., ,Buzin, N., Webb, J., Green, T. A., . . . Self, D. W. (2011). Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats. The Journal of Neuroscience, 31, 16447-16457.
    Lee, S. P., So, C. H., Rashid, A. J., Varghese, G., Cheng, R., Lanca, A. J., . . . George, S. R. (2004). Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. The Journal of Biological Chemistry, 279, 35671-35678.
    Lester, J., Fink, S., Aronin, N., & DiFiglia, M. (1993). Colocalization of D1 and D2 dopamine receptor mRNAs in striatal neurons. Brain Research, 621, 106-110.
    Lynch, W. J., Kiraly, D. D., Caldarone, B. J., Picciotto, M. R., & Taylor, J. R. (2007). Effect of cocaine self-administration on striatal PKA-regulated signaling in male and female rats. Psychopharmacology, 191, 263-271.
    Lynch, W. J., & Taylor, J. R. (2005). Persistent changes in motivation to self-administer cocaine following modulation of cyclic-AMP-dependent protein kinase A (PKA) activity in the nucleus accumbens. European Journal of Neuroscience, 22, 1214-1220.
    Makihara, Y., Okuda, Y., Kawada, C., Matsumoto, M., Waddington, J. L., Koshikawa, N., & Tomiyama, K. (2007). Differential involvement of cyclase- versus non-cyclase-coupled D1-like dopamine receptors in orofacial movement topography in mice: Studies with SKF 83822. Neuroscience Letters, 415, 6-10.
    Maricq, A. V., & Church, R. M. (1983). The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychopharmacology, 79, 10-15.
    Maricq, A. V., Roberts, S., & Church, R. M. (1981). Methamphetamine and time estimation. Journal of Experimental Psychology, 7, 18-30.
    Mattingly, B. A., Rowlett, J. K., & Lovell, G. (1993). Effects of daily SKF 38393, quinpirole, and SCH 23390 treatments on locomotor activity and subsequent sensitivity to apomorphine. Psychopharmacology, 110, 320-326.
    Mattson, B. J., Bossert, J. M., Simmons, D. E., Nozaki, N., Nagarkar, D., Kreuter, J. D., & Hope, B. T. (2005). Cocaine-induced CREB phosphorylation in nucleus accumbens of cocaine-sensitized rats is enabled by enhanced activation of extracellular signal-related kinase, but not protein kinase A. Journal of Neurochemistry, 95, 1481-1494.
    McMillan, D. E. (1969). Effects of d-amphetamine on performance under several parameters of multiple fixed-ratio, fixed-interval schedules. The Journal of Pharmacology and Experimental Therapeutics, 167, 26-33.
    Meck, W. H. (1986). Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacology, Biochemistry and Behavior, 25, 1185-1189.
    Meck, W. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109, 93-107.
    Meck, W. H., & Church, R. M. (1984). Hippocampus, time, and memory. Behavioral Neuroscience, 98, 3-22.
    Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18, 145-152.
    Meyer, M. E., & Shults, J. M. (1993). Dopamine D1 receptor family agonists, SK&F38393, SK&F77434, and SK&F83958, differentially affect locomotor activities in rats. Pharmacology, Biochemistry and Behavior, 46, 269-274.
    Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., & Caron, M. G. (1998). Dopamine receptors: From structure to function. Physiological Reviews, 78, 189-225.
    Morgan, D. L. (2010). Schedules of reinforcement at 50: A retrospective appreciation. The Psychological Record, 60, 151-158.
    Neumeyer, J. L., Kula, N. S., Bergman, J., & Baldessarini, R. J. (2003). Receptor affinities of dopamine D1 receptor-selective novel phenylbenzazepines. European Journal of Pharmacology, 474, 137-140.
    Neve, K. A., Seamans, J. K., & Trantham-Davidson, H. (2004). Dopamine receptor signaling. Journal of Receptors and Signal Transduction, 24, 165-205.
    Ng, J., Rashid, A. J., So, C. H., O’Dowd, B. F., & George, S. R. (2010). Activation of calcium/calmodulin-dependent protein kinase IIα in the striatum by the heteromeric D1-D2 dopamine receptor complex. Neuroscience, 165, 535-541.
    Nishi, A., Kuroiwa, M., & Shuto, T. (2011). Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Frontiers in Neuroanatomy, 5, 1-10.
    Nishi, A., Snyder, G. L., & Greenhard, P. (1997). Bidirectional regulation of DARPP-32 phosphorylation by dopamine. The Journal of Neuroscience, 17, 8147-8155.
    Nowend, K. L., Arizzi, M., Carlson, B. B., & Salamone, J. D. (2001). D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacology, Biochemistry and Behavior, 69, 373-382.
    O’Dowd, B. F., Ji, X., Nguyen, T., & George, S. R. (2012). Two amino acids in each of D1 and D2 dopamine receptor cytoplasmic regions are involved in D1-D2 heteromer formation. Biochemical and Biophysical Research Communications, 417, 23-28.
    Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419-427.
    Olds, M. E., & Olds, J. (1963). Approach-avoidance analysis of rat diencephalon. Journal of Comparative Neurology, 120, 259-295.
    Olsen, C. M. (2011). Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology, 61, 1109-1122.
    Olton, D. S., Meck, W. H., & Church, R. M. (1987). Separation of hippocampal and amygdaloid involvement in temporal memory dysfunctions. Brain Research, 404, 180-188.
    Panchalingam, S., & Undie, A. S. (2001). SKF 83959 exhibits biochemical agonism by stimulating [35S]GTPγS binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology, 40, 826-837.
    Parent, A., Bouchard, C., & Smith, Y. (1984). The striatopallidal and striatonigral projections: Two distinct fiber systems in primate. Brain Research, 303, 385-390.
    Pastor, M. A., Artieda, J., Jahanshahi, M., & Obeso, J. A. (1992). Time estimation and reproduction is abnormal in Parkinson’s disease. Brain, 115, 211-225.
    Peacock, L., & Gerlach, J. (2001). Aberrant behavioral effects of a dopamine D1 receptor antagonist and agonist in monkeys: Evidence of uncharted dopamine D1 receptor actions. Biological Psychiatry, 50, 501-509.
    Perreault, M. L., Hasbi, A., Alijaniaram, M., Fan, T., Varghese, G., Fletcher, P. J., . . . George, S.R. (2010). The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons. The Journal of Biological Chemistry, 285, 36625-36634.
    Perreault, M. L., Hasbi, A., O’Dowd, B. F., & George, S. R. (2013). Heteromeric dopamine receptor signaling complexes: Emerging neurobiology and disease relevance. Neuropsychopharmacology, 39, 156-168.
    Pierce, R. C., & Kumaresan, V. (2006). The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? Neuroscience and Behavioral Reviews, 30, 215-238.
    Platt, D. M., Rowlett, J. K., & Spealman, R. D. (2000). Dissociation of cocaine-antagonist properties and motoric effects of the D1 receptor partial agonists SKF 83959 and SKF 77434. The Journal of Pharmacology and Experimental Therapeutics, 293, 1017-1026.
    Platt, D. M., Rowlett, J. K., & Spealman, R. D. (2001). Modulation of cocaine and food self-administration by low- and high-efficacy D1 agonists in squirrel monkeys. Psychopharmacology, 157, 208-216.
    Rashid, A. J., So, C. H., Kong, M. M. C., Furtak, T., El-Ghundi, M., Cheng, R., . . . George, S. R. (2007). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 104, 654-659.
    Robbins, T. W., Roberts, D. C., & Koob, G. F. (1983). Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens. The Journal of Pharmacology and Experimental Therapeutics, 224, 662-673.
    Rusk, I. N., & Cooper, S. J. (1988). Profile of the selective dopamine D-2 receptor agonist N-0437: Its effects on palatability- and deprivation-induced feeding, and operant responding for food. Physiology and Behavior, 44, 545-553.
    Rusk, I. N., & Cooper, S. J. (1989). The selective dopamine D1 receptor agonist SK&F 38393: Its effects on palatability- and deprivation-induced feeding, and operant responding for food. Pharmacology Biochemistry and Behavior, 34, 17-22.
    Rusk, I. N., & Cooper, S. J. (1994). Parametric studies of selective D1 or D2 antagonists: Effects on appetitive and feeding behavior. Behavioral Pharmacology, 5, 615-622.
    Sabol, K. E., Richards, J. B., Layton, K., & Seiden, L. S. (1995). Amphetamine analogs have differential effects on DRL 36-s schedule performance. Psychopharmacology, 121, 57-65.
    Salamone, J. D., & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76, 470-485.
    Salamone, J. D., Cousins, M. S., & Snyder, B. J. (1997). Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Behavioral Reviews, 21, 341-359.
    Sanger, D. J., & Blackman, D. E. (1989). Operant behavior and the effects of centrally acting drugs. In A. A. Boulton, G. B. Baker, & A. J. Greenshaw (Eds.), Neuromethods (pp. 299-334). Clifton, NJ: Humana Press.
    Sanger, D. J., Key, M., & Blackman, D. E. (1974). Differential effects of chlordiazepoxide and d-amphetamine on responding maintained by a DRL schedule of reinforcement. Psychopharmacologia, 38, 159-171.
    Schindler, C. W., & Carmona, G. N. (2002). Effects of dopamine agonists and antagonists on locomotor activity in male and female rats. Pharmacology, Biochemistry, and Behavior, 72, 857-863.
    Schoenfeld, W. N., Cumming, W. W., & Hearst, E. (1956). On the classification of reinforcement schedules. Proceedings of the National Academy of Sciences of the United States of America, 42, 563-570.
    Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593-1599.
    Segal, E. F. (1962). Effects of dl-amphetamine under concurrent VI DRL reinforcement. Journal of the Experimental Analysis of Behavior, 5, 105-112.
    Self, D. W., Genova, L. M., Hope, B. T., Barnhart, W. J., Spencer, J. J., & Nestler, E. J. (1998). Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. Journal of Neuroscience, 18, 1848-1859.
    Shiflett, M. W., & Balleine, B. W. (2011). Molecular substrates of action control in cortico-striatal circuits. Progress in Neurobiology, 95, 1-13.
    Shiflett, M. W., Martini, R. P., Mauna, J. C., Foster, R. L., Peet, E, & Thiels, E. (2008). Cue-elicited reward seeking requires extracellular signal-regulated kinase activation in the nucleus accumbens. The Journal of Neuroscience, 28, 1434-1443.
    Shull, R. L. (1970). A response-initiated fixed-interval schedule of reinforcement. Journal of the Experimental Analysis of Behavior, 13, 13-15.
    Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. New York, NY: Appleton-Century-Crofts, Inc.
    Smith, C. B. (1965). Effects of d-amphetamine upon brain amine content and locomotor activity of mice. The Journal of Pharmacology and Experimental Therapeutics, 147, 96-102.
    Sokolowski, J. D., & Salamone, J. D. (1994). Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Research, 642, 20-28.
    Stolzenberg, D. S., Zhang, K. Y., Luskin, K., Ranker, L., Bress, J., & Numan, M. (2010). Dopamine D1 receptor activation of adenylyl cyclase, not phospholipase C, in the nucleus accumbens promotes maternal onset in rats. Hormones and Behavior, 57, 96-104.
    Stoof, J. C., & Kebabian, J. W. (1981). Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature, 294, 366-368.
    Sun, P., Enslen, H., Myung, P. S., & Maurer, R. A. (1994). Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes and Development, 8, 2527-2539.
    Undie, A. S., & Friedman, E. (1990). Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. The Journal of Pharmacology and Experimental Therapeutics, 253, 987-992.
    Undie, A. S., Weinstock, J., Sarau, H. M., & Friedman, E. (1994). Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. Journal of Neurochemistry, 62, 2045-2048.
    Valjent, E., Corvol, J. C., Pages, C., Besson, M. J., Maldonado, R., & Caboche, J. (2000). Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. The Journal of Neuroscience, 20, 8701-8709.
    Valjent, E., Pascoli, V., Svenningsson, P., Paul, S., Enslen, H., Corvol, J. C., . . . Girault, J. A. (2005). Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 102, 491-496.
    Vezina, P. (1996). D1 dopamine receptor activation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. The Journal of Neuroscience, 16, 2411-2420.
    Wall, P. M., & Messier, C. (2001). The hippocampal formation – orbitomedial prefrontal cortex circuit in the attentional control of active memory. Behavioural Brain Research, 127, 99-117.
    Wickens, J. R., Budd, C. S., Hyland, B. I., & Arbuthnott, G. W. (2007). Striatal contributions to reward and decision making. Annals of the New York Academy of Sciences, 1104, 192-212.
    Wiltgen, B. J., Law, M., Ostlund, S., Mayford, M., & Balleine, B. W. (2007). The influence of Pavlovian cues on instrumental performance is mediated by CaMKII activity in the striatum. European Journal of Neuroscience, 25, 2491-2497.
    Wise, R. A. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences, 5, 39-87.
    Wise, R. A. (2008). Dopamine and Reward: The anhedonia hypothesis 30 years on. Neurotoxicity Research, 14, 169-183.
    Wise, R. A., Spindler, J., De Wit, H., & Gerberg, G. J. (1978). Neuroleptic-induced ”anhedonia” in rats: Pimozide blocks reward quality of food. Science, 201, 262-264.
    Wong, A. C., Shetreat, M. E., Clarke, J. O., & Rayport, S. (1999). D1- and D2-like dopamine receptors are co-localized on the presynaptic varicosities of striatal and nucleus accumbens neurons in vitro. Neuroscience, 89, 221-233.
    Wu, X., & McMurray, C T. (2001). Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. The Journal of Biological Chemistry, 276, 1735-1741.
    Xing, J., Ginty, D. D., & Greenberg, M. E. (1996). Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science, 273, 959-963.
    Yan, Z., Feng, J., Fienberg, A. A., & Greengard, P. (1999). D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proceedings of the National Academy of Sciences of the United States of America, 96, 11607-11612.
    Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. European Journal of Neuroscience, 19, 181-189.
    Yin, H. H., Ostlund, S. B., Knowlton, B. J., & Balleine, B. W. (2005). The role of the dorsomedial striatum in instrumental conditioning. European Journal of Neuroscience, 22, 513-523.
    Zanassi, P., Paolillo, M., Feliciello, A., Avvedimento, E. V., Gallo, V., & Schinelli, S. (2001). cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. The Journal of Biological Chemistry, 276, 11487-11495.
    Zeiler, M. (1977). Schedules of reinforcement: The controlling variables. In W. K. Honig & J. E. R. Staddon, Handbook of operant behavior (pp.201-232). Englewood Cliffs, NJ: Prentice Hall.
    Zhang, H., Ma, L., Wang, F., Chen, J., & Zhen, X. (2007). Chronic SKF 83959 induced less severe dyskinesia and attenuated L-DOPA-induced dyskinesia in 6-OHDA-lesioned rat model of Parkinson’s disease. Neuropharmacology, 53, 125-133.
    Zhang, Z. J., Jiang, X. L., Zhang, S. E., Hough, C. J., Li, H., Chen, J. G., & Zhen, X. C. (2005). The paradoxical effects of SKF 83959, a novel dopamine D1-like receptor agonist, in the rat acoustic startle reflex paradigm. Neuroscience Letters, 382, 134-138.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100752009
    Data Type: thesis
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File SizeFormat
    200901.pdf1281KbAdobe PDF472View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback