English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88531/118073 (75%)
Visitors : 23456773      Online Users : 128
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/64440


    Title: 類神經網路應用於擬定汽車保險費率
    Other Titles: Applying Artificial Neural Network to Automobile Insurance Ratemaking
    Authors: 余清祥;黃泓智;陳志昌
    Jack C. Yue;Huang,Hong-Chih;Cheng,Chi-Chung
    Contributors: 風管系
    Keywords: 汽車車體損失保險;最小誤差估計法;類神經網路
    Automobile Material Damage Insurance;Minimum Biased Estimate;Artificial Neural Network
    Date: 2007-07
    Issue Date: 2014-03-04 17:06:22 (UTC+8)
    Abstract: 汽車保險是與消費者關係最為密切的財產保險,但或許因為國人對汽車保險的認知不足,至今仍存在不合理現象。例如:近年汽車車體損失險的投保率下降且損失率逐年上升,其原因或可歸咎於現行的保費不見得反映實際的風險,但此有違精算費率精神的現象若持續下去,勢必對汽車保險的財務健全有不良影響。本文採用國內某產險公司1999 年至2002 年汽車車體損失保險資料,探討保費收入與理賠支出的關係,希冀在滿足保費均衡的原則下,尋求較小變異數的預測方法,以降低風險。本文考量過去用於產險的最小誤差估計法,以及根據經驗建構模型的類神經網路法,比較這兩種方法何者較能降低分類的誤差與縮小個體的誤差,以期保費收入與理賠支出兩者間有較小的差異。實證結果顯示,現行國內車體損失險不完全符合保費均衡原則,其間仍存在保險補貼。而在模型配適上,最小誤差估計法計較能改善收支不平衡的現象;而類神經網路法的加減費系統具有較大加減幅度,更能有效區分高低風險群組,降低不同危險群組間的補貼現象,並在跨年度的資料中具有較小的誤差變異。
    Relation: 風險管理學報, 9(2), 149-172
    Data Type: article
    Appears in Collections:[風險管理與保險學系 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    149172.pdf351KbAdobe PDF453View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback