English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 84416/113039 (75%)
造訪人次 : 22171417      線上人數 : 619
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 會計學系 > 期刊論文 >  Item 140.119/64035
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/64035

    題名: An Analytic Apporach to Select Data Mining for Business Decision
    作者: Seng, Jia-Lang;Chen, T.C.
    諶家蘭;Chen, T. C.
    貢獻者: 會計系
    關鍵詞: Data mining;Business decision;Selection model
    日期: 2010-12
    上傳時間: 2014-02-19 17:09:06 (UTC+8)
    摘要: Due to the information technology improvement and the growth of internet, enterprises are able to collect and to store huge amount of data. Using data mining technology to aid the data processing, information retrieval and knowledge generation process has become one of the critical missions to enterprise, so how to use data mining tools properly is user concern. Since not every user completely understand the theory of data mining, choosing the best solution from the functions which data mining tools provides is not easy. If user is not satisfied with the outcome of mining, communication with IT employees to adjust the software costs lots of time. To solve this problem, a selection model of data mining algorithms is proposed. By analyzing the content of business decision and application, user requirements will map to certain data mining category and algorithm. This method makes algorithm selection faster and reasonable to improve the efficiency of applying data mining tools to solve business problems.
    關聯: Expert Systems With Applications, 37(12), 8042-8057
    資料類型: article
    DOI 連結: http://dx.doi.org/10.1016/j.eswa.2010.05.083
    DOI: 10.1016/j.eswa.2010.05.083
    顯示於類別:[會計學系] 期刊論文


    檔案 描述 大小格式瀏覽次數
    8042.pdf335KbAdobe PDF1341檢視/開啟


    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋