English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88668/118332 (75%)
Visitors : 23506437      Online Users : 229
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/63949
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/63949

    Title: Swarm Intelligence for Cardinality-Constrained Portfolio Problems
    Authors: 林我聰
    Deng, Guang-Feng;Lin, Woo-Tsong
    Contributors: 資管系
    Keywords: Particle swarm optimization;cardinality constrained portfolio optimization problem;Markowitz mean-variance model;nonlinear mixed quadratic programming problem;swarm intelligence
    Date: 2010-11
    Issue Date: 2014-02-18 15:18:20 (UTC+8)
    Abstract: This work presents Particle Swarm Optimization (PSO), a collaborative population-based swarm intelligent algorithm for solving the cardinality constraints portfolio optimization problem (CCPO problem). To solve the CCPO problem, the proposed improved PSO increases exploration in the initial search steps and improves convergence speed in the final search steps. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The computational test results indicate that the proposed PSO outperformed basic PSO algorithm, genetic algorithm (GA), simulated annealing (SA), and tabu search (TS) in most cases.
    Relation: Lecture Notes in Artificial Intelligence, 6423, 406-415
    Source URI: http://link.springer.com/chapter/10.1007%2F978-3-642-16696-9_44
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1007/978-3-642-16696-9_44
    DOI: 10.1007/978-3-642-16696-9_44
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    406415.pdf256KbAdobe PDF860View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback