English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 77757/107561 (72%)
造訪人次 : 20047717      線上人數 : 455
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/63015
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/63015

    題名: An Abductive-Reasoning Guide for Finance Practitioners
    作者: Tsaih, Rua-Huan;Lin, Hsiou-Wei William;Ke, Wen-Chyan
    貢獻者: 資管系
    關鍵詞: Abductive reasoning;Rule extraction;Neural networks;Linear/nonlinear programming
    日期: 2013.06
    上傳時間: 2013-12-26 17:12:44 (UTC+8)
    摘要: This article proposes a process through which a finance practitioner’s knowledge interacts with artificial intelligence (AI) models. AI models are widely applied, but how these models learn or whether they learn the right things is not easily unveiled. Extant studies especially regarding neural networks have attempted to extract reliable rules/features from AI models. However, if these models make mistakes, then the decision maker may establish paradoxical beliefs. Therefore, extracted rules/features should be justified via the prior thoughts, and vice versa. That is, with these extracted rules/features, a practitioner may need either to update his or her belief or to disregard the AI models. This study sets up a finance demonstraion for the proposed process. The proposed guide demonstrates an abductive-reasoning effect.
    關聯: Computational Economics, 43(4), pp.411-443
    資料類型: article
    DOI: http://dx.doi.org/10.1007/s10614-013-9390-y
    顯示於類別:[資訊管理學系] 期刊論文


    檔案 描述 大小格式瀏覽次數
    411-443.pdf682KbAdobe PDF1033檢視/開啟


    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋