English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88987/118693 (75%)
Visitors : 23571095      Online Users : 236
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/46714
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/46714


    Title: A Guide for the Upper Bound on the Number of Continuous-Valued Hidden Nodes of a Feed-Forward Network
    Authors: 蔡瑞煌
    Tsaih,Rua-Huan;Wan,Yat-wah
    Keywords: Bound;hidden nodes;single-hidden layer feed-forward neural network;preimage;parity problem
    Date: 2010-01
    Issue Date: 2010-10-06 11:40:01 (UTC+8)
    Abstract: This study proposes and validates a construction concept for the realization of a real-valued single-hidden layer feed-forward neural network (SLFN) with continuous-valued hidden nodes for arbitrary mapping problems. The proposed construction concept says that for a specific application problem, the upper bound on the number of used hidden nodes depends on the characteristic of adopted SLFN and the observed properties of collected data samples. A positive validation result is obtained from the experiment of applying the construction concept to the m-bit parity problem learned by constructing two types of SLFN network solutions.
    Relation: 19th International Conference on Artificial Neural Networks (ICANN2009)
    Lecture Notes in Computer Science,5768,658-667
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1007/978-3-642-04274-4_68
    DOI: 10.1007/978-3-642-04274-4_68
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    658-667.pdf203KbAdobe PDF911View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback