English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88613/118155 (75%)
Visitors : 23459881      Online Users : 329
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/45767


    Title: Identifying Firm-Specific Risk Statements in News Articles
    Authors: 陳彩稚
    Lu, Hsin-Min;Huang, Nina WanHsin;Zhang, Zhu;Chen , Tsai-Jyh
    Date: 2009-04
    Issue Date: 2010-10-06 10:40:31 (UTC+8)
    Abstract: Textual data are an important information source for risk management for business organizations. To effectively identify, extract, and analyze risk-related statements in textual data, these processes need to be automated. We developed an annotation framework for firm-specific risk statements guided by previous economic, managerial, linguistic, and natural language processing research. A manual annotation study using news articles from the Wall Street Journal was conducted to verify the framework. We designed and constructed an automated risk identification system based on the annotation framework. The evaluation using manually annotated risk statements in news articles showed promising results for automated risk identification.
    Relation: Intelligence and Security Informatics, Springer-Verlag, pp.42-53
    Data Type: book/chapter
    DOI 連結: http://dx.doi.org/10.1007/978-3-642-01393-5_6
    DOI: 10.1007/978-3-642-01393-5_6
    Appears in Collections:[風險管理與保險學系 ] 專書/專書篇章

    Files in This Item:

    File Description SizeFormat
    42-53.pdf197KbAdobe PDF869View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback