English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 84250/112872 (75%)
造訪人次 : 22135988      線上人數 : 585
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32569
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/32569

    題名: 4-Caterpillars的優美標法
    Graceful Labelings of 4-Caterpillars
    作者: 吳文智
    Wu, Wen Chih
    貢獻者: 李陽明
    Wu, Wen Chih
    graceful labelling
    日期: 2005
    上傳時間: 2009-09-17 13:46:05 (UTC+8)
    摘要: 樹是一個沒有迴路的連接圖。而4-caterpillar是一種樹,它擁有單一路徑連接到數個長度為3的路徑的端點。一個有n個邊的無向圖G的優美標法是一個從G的點到{0,1,2,...,n}的一對一函數,使得每一個邊的標號都不一樣,其中,邊的標號是兩個相鄰的點的編號差的絕對值。在這篇論文當中,我們最主要的目的是使用一個演算法來完成4-caterpillars的優美標法。
    A tree is connected acyclic graph. A 4-caterpillar is a tree with a single path only incident to the end-vertices of paths of length 3. A graceful labelling of an undirected graph G with n edges is a one-to-one function from the set of vertices of G to the set {0,1,2,...,n} such that the induced edge labels are all distinct, where the edge label is the difference between two endvertex labels. In this thesis, our main purpose is to use an algorithm to yield graceful labellings of 4-caterpillars.
    參考文獻: [1] R.E. Aldred and B.D. McKay, Graceful and harmonious
    labellings of trees, Bull. Inst. Combin. Appl., 23 (1998) 69-72.
    [2] R.E. Aldred, J. Siran and M. Siran, A Note on the number of graceful labellings of paths, Discrete Math., 261 (2003) 27-30.
    [3] J.C. Bermond, Graceful graphs, radio antennae and French windmills, Graph Theory and Combinatorics, Pitman, London (1979) 18-37.
    [4] J.C. Bermond and D. Sotteau, Graph decompositions and G-design, Proc. 5th British Combinatorics Conference, 1975, Congress. Number., XV (1976) 53-72.
    [5] V. Bhat-Nayak and U. Deshmukh, New families of graceful banana trees, Proc. Indian Acad. Sci Math. Sci., 106 (1996) 201-216.
    [6] G. S. Bloom, A chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful, Ann. N. Y. Acad. Sci., 326 (1979) 32-51.
    [7] C.P. Bonnington and J. Siran, Bipartite labelling of trees with maximum degree three, Journal of Graph Theory, 31 (1999) 37-56.
    [8] L. Brankovic, A. Rose and J. Siran, Labelling of trees with maximum degree three and improved bound, preprint, (1999).
    [9] H.J. Broersma and C. Hoede, Another equivalent of the graceful tree conjecture, Ars Combinatoria, 51 (1999) 183-192.
    [10] M. Burzio and G. Ferrarese, The subdivision graph of a graceful tree is a graceful tree, Discrete Mathematices, 181 (1998) 275-281.
    [11] I. Cahit, R. Cahit, On the graceful numbering of spanning trees, Information Processing Letters, vol. 3, no. 4, pp. (1998) 115-118.
    [12] Y.-M. Chen, Y.-Z. Shih, 2-Caterpillars are graceful. Preprint, (2006).
    [13] W.C. Chen, H.I. Lu and Y.N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bulletin of Mathematics, 21 (1997) 337-348.
    [14] P. Hrnciar, A. Havier, All trees of diameter five are graceful. Discrete Mathematices, 31 (2001) 279-292.
    [15] K.M. Koh, D.G. Rogers and T. Tan, A graceful arboretum: A survey of graceful trees, in Proceedings of Franco-Southeast Asian Conference, Singapore, May 1979, 2 278-287.
    [16] D. Morgan, Graceful labelled trees from Skolem sequences, Proc. of the Thirty-first Southeastern Internat, Conf, on Combin., Graph Theory, Computing (Boca Raton, FL, 2000) and Congressus Numerantium, (2000) 41-48.
    [17] D. Morgan, All lobsters with perfect matchings are graceful, Electronic Notes in Discrete Mathematices, 11 (2002), 503-508.
    [18] A.M. Pastel and H. Raynaud, Les oliviers sont gracieux, Colloq. Grenoble, Publications Universite de Grenoble, (1978).
    [19] A. Rose, On certain valuations of the vertices of graph, Theory of Graphs, International Symposium, Rome, July 1996, Gordon and Breach, N.Y. and Dunod Paris (1967) 349-355.
    [20] J.-G. Wang, D.J. Jin, X.-G. Lu and D. Zhang, The gracefulness of a class of lobster Trees, Mathematical Computer Modelling, 20 (1994) 105-110.
    [21] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc. (1996).
    描述: 碩士
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0091751009
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文


    檔案 描述 大小格式瀏覽次數
    75100901.pdf136KbAdobe PDF1557檢視/開啟
    75100902.pdf86KbAdobe PDF1530檢視/開啟
    75100903.pdf69KbAdobe PDF1587檢視/開啟
    75100904.pdf119KbAdobe PDF1759檢視/開啟
    75100905.pdf143KbAdobe PDF1511檢視/開啟
    75100906.pdf148KbAdobe PDF1866檢視/開啟
    75100907.pdf469KbAdobe PDF1956檢視/開啟
    75100908.pdf65KbAdobe PDF1500檢視/開啟
    75100909.pdf136KbAdobe PDF1688檢視/開啟


    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋