English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88613/118155 (75%)
Visitors : 23476848      Online Users : 337
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/124328

    Title: 工業大數據之異常偵測分析挑戰:以紙業為例
    Authors: 白浩廷
    Contributors: 2019智慧企業資訊應用發展國際研討會
    Keywords: 大數據分析、機器學習、斷紙
    Big data analytics, machine learning, paper breaks
    Date: 2019-06
    Issue Date: 2019-07-17 15:04:21 (UTC+8)
    Abstract: 異常偵測應用包括防治金融詐欺、改善工業設備營運等。以紙業為例,造紙流程涉及上千個感測器,形成一個高維度且巨量的資料集。德國PTS指出每次斷紙事件將造成至少6,000歐元(相當於210,000新臺幣)損失,斷紙頻率約每日發生6至9次。此外,斷紙造成的能耗虛耗約占總生產量的2%至7%,不僅是經濟上的虧損還會浪費大量資源。本研究探討異常偵測技術與其應用在斷紙分析之發展狀況,我們以非線性支持向量機分類方法(Non-linear SVM, N-SVM)分析國外斷紙資料集,並從分析結果論述工業數據之異常偵測挑戰、異常因素探索以及資料品質的重要性。
    Anomaly detection technology has been widely applied to varied areas, e.g., fraud detection for credit cards, fault detection in safety critical systems, and so on. In paper industry, the paper-making process involves in thousands of sensors, which forms high-dimensional large amounts of data. In analyzing such big data, the state-of-the-art methods probably suffer from computation and distortion problems. According to PTS, a paper break costs around 210,000 NT$, and it occurred 6 to 9 times per day. In addition, paper breaks cause 2–7% of the total production loss. In this paper, we survey the taxonomy of anomaly detection methods and their applications in analyzing paper breaks. Moreover, we adopt the non-linear SVM method (N-SVM) to analyze the paper breaks dataset. Finally, we discuss the findings and illustrate the importance of anomaly exploration and data quality.
    Relation: 2019智慧企業資訊應用發展國際研討會
    Data Type: conference
    Appears in Collections:[2019智慧企業資訊應用發展國際研討會] 會議論文

    Files in This Item:

    File Description SizeFormat
    8.pdf100KbAdobe PDF27View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback