In this paper, the stock index S&P 500 is used to test the predicting performance of genetic programming (GP) and genetic programming neural networks (GPNN). While both GP and GPNN are considered universalapproximators, in this practical financial application, they perform differently. GPNN seemed to suffer the overlearning problem more seriously than GP; the latter outdid the former in all the simulations.
關聯:
Artificial Neural Nets and Genetic Algorithms pp 397-400