政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118863
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  全文笔数/总笔数 : 88613/118155 (75%)
造访人次 : 23481473      在线人数 : 147
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/118863


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/118863


    题名: Attention allocation for human multi-robot control: Cognitive analysis based on behavior data and hidden states
    作者: 林怡伶
    Chien, Shih-Yi
    Lin, Yi-Ling
    Lee, Pei-Ju
    Han, Shuguang
    Lewis, Michael
    Sycara, Katia
    贡献者: 資管系
    关键词: Human-robot interaction;Cognitive assistant;Task switching;Hidden Markov model;System reliability;Scheduling
    日期: 2018-09
    上传时间: 2018-07-24 16:46:35 (UTC+8)
    摘要: Human multi-robot interaction exploits both the human operator's high-level decision-making skills and the robotic agents’ vigorous computing and motion abilities. While controlling multi-robot teams, an operator's attention must constantly shift between individual robots to maintain sufficient situation awareness. To conserve an operator's attentional resources, a robot with self-reflect capability on its abnormal status can help an operator focus her attention on emergent tasks rather than unneeded routine checks. With the proposing self-reflect aids, the human-robot interaction becomes a queuing framework, where the robots act as the clients to request for interaction and an operator acts as the server to respond these job requests. This paper examined two types of queuing schemes, the self-paced Open-queue identifying all robots’ normal/abnormal conditions, whereas the forced-paced shortest-job-first (SJF) queue showing a single robot's request at one time by following the SJF approach. As a robot may miscarry its experienced failures in various situations, the effects of imperfect automation were also investigated in this paper. The results suggest that the SJF attentional scheduling approach can provide stable performance in both primary (locate potential targets) and secondary (resolve robots’ failures) tasks, regardless of the system's reliability levels. However, the conventional results (e.g., number of targets marked) only present little information about users’ underlying cognitive strategies and may fail to reflect the user's true intent. As understanding users’ intentions is critical to providing appropriate cognitive aids to enhance task performance, a Hidden Markov Model (HMM) is used to examine operators’ underlying cognitive intent and identify the unobservable cognitive states. The HMM results demonstrate fundamental differences among the queuing mechanisms and reliability conditions. The findings suggest that HMM can be helpful in investigating the use of human cognitive resources under multitasking environments.
    關聯: International Journal of Human-Computer Studies,Volume 117, Pages 30-44
    数据类型: article
    DOI 連結: https://doi.org/10.1016/j.ijhcs.2018.03.005
    DOI: 10.1016/j.ijhcs.2018.03.005
    显示于类别:[資訊管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    3044.pdf2499KbAdobe PDF224检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈