English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 79897/108956 (73%)
造訪人次 : 20620855      線上人數 : 572
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/117658


    題名: 以微觀模擬探討多車道使用規則:對臺灣高速公路行車法規建言
    A comparative study of multi-lane traffic rules using microsimulation modeling: a proposal for highway rules in Taiwan
    作者: 張太乙
    Zhang, Taiyi
    貢獻者: 林瑜琤
    Lin, Yu-Cheng
    張太乙
    Zhang, Taiyi
    關鍵詞: 微觀模擬
    多車道模型
    變換車道規則
    單車道模型
    基本構圖
    Microsimulation
    Multi-lane model
    Lane-changing rules
    Single-lane model
    Fundamental diagram of traffic flow
    日期: 2018
    上傳時間: 2018-06-12 18:00:28 (UTC+8)
    摘要: 本論文藉由微觀模擬探討高速公路(或快速公路)之車道使用規則。我們比較三種規則:(1)對稱規則,車輛得選擇任一車道行車,並允許左側超車與右側超車;(2)非對稱規則,車輛僅能使用右側車道行車,並僅允許左側超車,完成超車之車輛須駛回右側車道繼續行車;(3)複合規則,車輛得選擇最左側車道以外之車道行車,而左側車道為超車道,於其上之車輛完成超車後須駛回相鄰之右側車道繼續行車。基礎構圖為比較之基準。模擬結果顯示非對稱規則使得總體流量提升。本論文之結果可作為法規修訂之參考。
    Using microsimulation we investigate a set of lane-changing rules for highway traffic. We compare three types of lane-changing rules in terms of the fundamental diagram of traffic flow in multi-lane versions of the Nagel-Schreckenberg model: (1) the symmetric rule, in which overtaking is allowed on all lanes; (2) the asymmetric rule, in which overtaking is forbidden on the right; vehicles should use left-hand lanes to overtake but return to the right lane after overtaking when safety criteria are fulfilled; (3) the hybrid rule, in which the leftmost lane is the overtaking lane while other lanes are treated equally as in the symmetric rule; the hybrid rule differs from the asymmetric rule only when the total number of lanes is larger than two. The simulation results show that the overall traffic flow increases when the asymmetric rule of lane changes is applied, revealing the advantage of this type of overtaking regulations.
    參考文獻: [1] 高速公路及快速公路交通管制規則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=K0040019&FLNO=8.
    [2] 違反道路交通管理事件統一裁罰基準及處理細則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=D0080029&FLNO=12.
    [3] 道路交通法. http://law.e-gov.go.jp/htmldata/S35/S35HO105.html.
    [4] Code de la route. http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006074228.
    [5] Highway Code. https://www.gov.uk/guidance/the-highway-code/motorways-253-to-273#lane-discipline-rules-264-to-266.
    [6] Nagel-Schreckenberg-Modell. https://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell.
    [7] Reglement verkeersregels en verkeerstekens 1990 (RVV 1990). http://wetten.overheid.nl/BWBR0004825.
    [8] Regulation No 39 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of vehicles with regard to the speedometer equipment including its installation.
    [9] Straßenverkehrs-Ordnung. http://www.gesetze-im-internet.de/stvo_2013/.
    [10] 林品亨, 林信賢. 速率計檢測介紹. https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_m073_05.pdf, 12 2009.
    [11] Biroli, G. Jamming: A new kind of phase transition? Nature Physics 3, 4 (2007), 222–223.
    [12] Chowdhury, D., Kertész, J., Nagel, K., Santen, L., and Schadschneider, A. Comment on “Critical behavior of a traffic flow model”. Phys. Rev. E 61 (3 2000), 3270–3271.
    [13] Chowdhury, D., Wolf, D. E., and Schreckenberg, M. Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules. Physica A: Statistical Mechanics and its Applications 235, 3-4 (1997), 417–439.
    [14] Csányi, G., and Kertész, J. Scaling behaviour in discrete traffic models. Journal of Physics A: Mathematical and General 28, 2 (1995), L427–L432.
    [15] Eisenblätter, B., Santen, L., Schadschneider, A., and Schreckenberg, M. Jamming transition in a cellular automaton model for traffic flow. Phys. Rev. E 57, 2 (1998), 1309–1314.
    [16] Gerwinski, M., and Krug, J. Analytic approach to the critical density in cellular automata for traffic flow. Physical Review E 60, 1 (1999), 188.
    [17] Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics 49, 7 (2000), 815–958.
    [18] Iannini, M. L. L., and Dickman, R. Traffic model with an absorbing-state phase transition. Phys. Rev. E 95 (2 2017), 022106.
    [19] Krauss, S., Wagner, P., and Gawron, C. Continuous limit of the Nagel-Schreckenberg model. Physical Review E 54, 4 (1996), 3707.
    [20] Nagel, K. Particle hopping vs. fluid-dynamical models for traffic flow, 1995.
    [21] Nagel, K. Particle hopping models and traffic flow theory. Phys. Rev. E 53 (5 1996), 4655–4672.
    [22] Nagel, K., and Paczuski, M. Emergent traffic jams. Phys. Rev. E 51 (4 1995), 2909–2918.
    [23] Nagel, K., and Schreckenberg, M. A cellular automaton model for freeway traffic. Journal de Physique I 2, 12 (1992), 2221–2229.
    [24] Nagel, K., Wolf, D. E., Wagner, P., and Simon, P. Two-lane traffic rules for cellular automata: A systematic approach. Phys. Rev. E 58, 2 (1997), 1425–1437.
    [25] Neumann, J. v., and Burks, A. W. Theory of self-reproducing automata, 1966.
    [26] Rickert, M., Nagel, K., and Schreckenberg, M. Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications 231 (1996), 534–550.
    [27] Roters, L., Lübeck, S., and Usadel, K. Critical behavior of a traffic flow model. Physical Review E 59, 3 (1999), 2672.
    [28] Schadschneider, A. Modelling of transport and traffic problems. In Cellular Automata. ACRI 2008. Lecture Notes in Computer Science, vol 5191. (2008), U. H., M. S., N. K., K. T., and B. S., Eds., Springer, Berlin, Heidelberg.
    [29] Souza, A. M. C. d., and Vilar, L. Traffic-flow cellular automaton: Order parameter and its conjugated field. Physical Review E 80, 2 (2009), 021105.
    [30] Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., ichi Tadaki, S., and Yukawa, S. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics 10, 3 (2008), 033001.
    [31] Vilar, L. C. Q., and De Souza, A. Cellular automata models for general traffic conditions on a line. Physica A: Statistical Mechanics and its Applications 211, 1 (1994), 84–92.
    描述: 碩士
    國立政治大學
    應用物理研究所
    103755005
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0103755005
    資料類型: thesis
    顯示於類別:[應用物理研究所 ] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    500501.pdf2663KbAdobe PDF5檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋