English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81088/110516 (73%)
造訪人次 : 20995161      線上人數 : 554
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/116164


    題名: 深度學習於中文句子之表示法學習
    Deep learning techniques for Chinese sentence representation learning
    作者: 管芸辰
    Kuan, Yun Chen
    貢獻者: 蔡銘峰
    Tsai, Ming Feng
    管芸辰
    Kuan, Yun Chen
    關鍵詞: 深度學習
    分散式表示
    情緒分類
    Deep learning
    Distributed representation
    Sentiment analysis
    日期: 2018
    上傳時間: 2018-03-02 12:05:00 (UTC+8)
    摘要: 本篇論文主要在探討如何利用近期發展之深度學習技術在於中文句子分散式表示法學習。近期深度學習受到極大的注目,相關技術也隨之蓬勃發展。然而相關的分散式表示方式,大多以英文為主的其他印歐語系作為主要的衡量對象,也據其特性發展。除了印歐語系外,另外漢藏語系及阿爾泰語系等也有眾多使用人口。還有獨立語系的像日語、韓語等語系存在,各自也有其不同的特性。中文本身屬於漢藏語系,本身具有相當不同的特性,像是孤立語、聲調、量詞等。近來也有許多論文使用多語系的資料集作為評量標準,但鮮少去討論各語言間表現的差異。

    本論文利用句子情緒分類之實驗,來比較近期所發展之深度學習之技術與傳統詞向量表示法的差異,我們將以TF-IDF為基準比較其他三個PVDM、Siamese-CBOW及Fasttext的表現差異,也深入探討此些模型對於中文句子情緒分類之表現。
    The paper demonstrates how the deep learning methods published in recent years applied in Chinese sentence representation learning.

    Recently, the deep learning techniques have attracted the great attention. Related areas also grow enormously.
    However, the most techniques use Indo-European languages mainly as evaluation objective and developed corresponding to their properties. Besides Indo-European languages, there are Sino-Tibetan language and Altaic language, which also spoken widely. There are only some independent languages like Japanese or Korean, which have their own properties. Chinese itself is belonged to Sino-Tibetan language family and has some characters like isolating language, tone, count word...etc.Recently, many publications also use the multilingual dataset to evaluate their performance, but few of them discuss the differences among different languages.

    This thesis demonstrates that we perform the sentiment analysis on Chinese Weibo dataset to quantize the effectiveness of different deep learning techniques. We compared the traditional TF-IDF model with PVDM, Siamese-CBOW, and FastText, and evaluate the model they created.
    參考文獻: [1] G. Arevian. Recurrent neural networks for robust real-world text classification. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, pages 326–329. IEEE Computer Society, 2007.
    [2] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.
    [3] L. Chen, C. Zhang, and C. Wilson. Tweeting under pressure: Analyzing trending topics and evolving word choice on sina weibo. In Proceedings of the First ACM Conference on Online Social Networks, COSN ’13, pages 89–100, New York, NY,USA, 2013. ACM.
    [4] K. Dashtipour, S. Poria, A. Hussain, E. Cambria, A. Y. A. Hawalah, A. Gelbukh, and Q. Zhou. Multilingual sentiment analysis: State of the art and independent comparison of techniques. Cognitive Computation, 8(4):757–771, Aug 2016.
    [5] K.-w. Fu and M. Chau. Reality check for the chinese microblog space: a random sampling approach. PloS one, 8(3):e58356, 2013.
    [6] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate nearest neighbor search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2946–2953, 2013.
    [7] H. J´egou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one billion vectors: re-rank with source coding. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 861–864. IEEE, 2011.
    [8] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. J´egou, and T. Mikolov. Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651,2016.
    [9] T. Kenter, A. Borisov, and M. de Rijke. Siamese cbow: Optimizing word embeddings for sentence representations. 2016.27
    [10] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014.
    [11] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun, and S. Fidler. Skip-thought vectors. arXiv preprint arXiv:1506.06726, 2015.
    [12] Q. V. Le and T. Mikolov. Distributed representations of sentences and documents icml. 2014.
    [13] T. Mikolov, Q. V. Le, and I. Sutskever. Exploiting similarities among languages for machine translation. CoRR, abs/1309.4168, 2013.
    [14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. pages 3111–3119, 2013.
    [15] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, pages 79–86. Association for Computational Linguistics, 2002.
    [16] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. Learning sentiment-specific word embedding for twitter sentiment classification. In ACL (1), pages 1555–1565,2014.
    [17] D. Vilares, M. Alonso Pardo, and C. G´omez-Rodr´ıguez. Supervised sentiment analysis in multilingual environments. 53, 05 2017.
    [18] J. Zhao, L. Dong, J. Wu, and K. Xu. Moodlens: an emoticon-based sentiment analysis system for chinese tweets. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1528–1531. ACM, 2012.
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    103971010
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0103971010
    資料類型: thesis
    顯示於類別:[資訊科學系碩士在職專班] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    101001.pdf1409KbAdobe PDF77檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋