English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88613/118155 (75%)
Visitors : 23481471      Online Users : 145
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 會議論文 >  Item 140.119/112485
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/112485


    Title: The framework of discovery early adopters’ incipient innovative ideas
    Authors: 林木花
    林我聰
    Hong, Chao Fu
    Lin, Mu Hua
    Lin, Woo Tsong
    Contributors: 資管系
    Keywords: Database systems;Internet;Association analysis;Business service;Business success;Chance discovery;Innovation diffusion;Innovative ideas;Social influence;Term Frequency;Inverse problems
    Date: 2016
    Issue Date: 2017-09-01 10:06:10 (UTC+8)
    Abstract: Crossing the chasm between early adopters and early majority in the market is not only an important issue for innovation diffusion, but also important information for firms to have the chance to occupy position and get great business success. Additionally, consumers can easily share their consumer-related articles through various IT blogs with Web 2.0, hence there is a big consuming data on the Internet. This research tried to discover incipient innovative ideas from early adopters to help firms to win the business. A new textual association analysis (Term Frequency - Inverse Clusters Frequency, TF-ICF) framework is a methodology to discover the more rare and useful ideas for designing future innovative business service. In the present study, TF-ICF methodology does not only find what instant foods or entertainment are needed for the passengers on travelling vehicles, but also reveal that the moisturizing emulation is another possible need of theirs. The results show that the TF-ICF method is useful to discover early adopters’ incipient innovative ideas.
    Relation: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9622, 319-327
    Data Type: conference
    DOI 連結: http://dx.doi.org/10.1007/978-3-662-49390-8_31
    DOI: 10.1007/978-3-662-49390-8_31
    Appears in Collections:[資訊管理學系] 會議論文

    Files in This Item:

    File SizeFormat
    319.pdf69027KbAdobe PDF193View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback