English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88987/118693 (75%)
Visitors : 23570551      Online Users : 300
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/109732


    Title: 從即時貝氏學習方法到群組學習
    Authors: 翁久幸
    Contributors: 統計系
    Keywords: 貝氏分析;線上(即時)機器學習
    Bayesian inference;online machine learning
    Date: 2016
    Issue Date: 2017-05-17 16:31:20 (UTC+8)
    Abstract: 線上(即時)機器學習係指內那些依順序逐個逐個處理資料觀測值的機器學習演算方法,在這種學習方法中,各個觀測值在被處理過後即可刪去,不需保留,因此,線上演算法需要的記憶空間較少。加上這類演算法一般較為簡單,容易執行,對於處理大量且即時的資料具有相當優勢。近年來由於網際網路發達產生許多大量且即時的資料,因而使即時演算法益加受到關注。本研究討論網路產品評比資料之即時統計分析方法,應用於實際資料之情況良好。研究成果可以有實際之應用。
    Online learning refers to learning methods that process data one-by-one. Since the data point can be removed after being processed, online methods require less memory and are advantageous when dealing with very large real-time data. This project studies online statistical inference for Internet product ratings data. The proposed method is applied to two real datasets. The results are satisfactory.
    Relation: MOST 104-2118-M-004-005
    Data Type: report
    Appears in Collections:[統計學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    104-2118-M-004-005.pdf389KbAdobe PDF160View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback