English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 67317/102017 (66%)
造訪人次 : 18724369      線上人數 : 641
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/106394


    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/106394


    題名: 應用情感分析於輿情之研究-以台灣2016總統選舉為例
    A Study of using sentiment analysis for emotion in Taiwan's presidential election of 2016
    作者: 陳昭元
    Chen, Chao-Yuan
    貢獻者: 姜國輝
    Chiang, Kuo-Huie
    陳昭元
    Chen, Chao-Yuan
    關鍵詞: 情感分析
    文字分類
    支援向量機
    Sentiment Analysis
    Text Classification
    SVM
    日期: 2016
    上傳時間: 2017-02-08 16:34:09 (UTC+8)
    摘要: 從2014年九合一選舉到今年總統大選,網路在選戰的影響度越來越大,後選人可透過網路上之熱門討論議題即時掌握民眾需求。
    文字情感分析通常使用監督式或非監督式的方法來分析文件,監督式透過文件量化可達很高的正確率,但無法預期未知趨勢,耗費人力標注文章。
    本研究針對網路上之政治新聞輿情,提出一個混合非監督式與監督式學習的中文情感分析方法,先透過非監督式方法標注新聞,再用監督式方法建立分類模型,驗證分類準確率。
    在實驗結果中,主題標注方面,本研究發現因文本數量遠大於議題詞數量造成TFIDF矩陣過於稀疏,使得TFIDF-Kmeans主題模型分類效果不佳;而NPMI-Concor主題模型分類效果較佳但是所分出的議題詞數量不均衡,然而LDA主題模型基於所有主題被所有文章共享的特性,使得在字詞分群與主題分類準確度都優於TFIDF-Kmeans和NPMI-Concor主題模型,分類準確度高達97%,故後續採用LDA主題模型進行主題標注。
    情緒傾向標注方面,證實本研究擴充後的情感詞集比起NTUSD有更好的字詞極性判斷效果,並且進一步使用ChineseWordnet 和 SentiWordNet,找出詞彙的情緒強度,使得在網友評論的情緒計算更加準確。亦發現所有文本的情緒指數皆具皆能反應民調指數,故本研究用文本的情緒指數來建立民調趨勢分類模型。
    在關注議題分類結果的實驗,整體正確率達到95%,而在民調趨勢分類結果的實驗,整體正確率達到85%。另外建立全面性的視覺化報告以瞭解民眾的正反意見,提供候選人在選戰上之競爭智慧。
    From Taiwanese local elections, 2014 to Taiwan presidential elections, 2016. Network is in growing influence of the election. The nominee can immediately grasp the needs of the people through a popular subject of discussion on the website.
    Sentiment Analysis research encompasses supervised and unsupervised methods for analyzing review text. The supervised learning is proved as a powerful method with high accuracy, but there are limits where future trend cannot be recognized, and the labels of individual classes must be made manually.
    In the study, we propose a Chinese Sentiment Analysis method which combined supervised and unsupervised learning. First, we used unsupervised learning to label every articles. Secondly, we used supervised learning to build classification model and verified the result.
    According to the result of finding subject labeling, we found that TFIDF-Kmeans model is not suitable because of document characteristic. NPMI-Concor model is better than TFIDF-Kmeans model. But the subject words is not balanced. However, LDA model has the feature that all subject is share by all articles. LDA model classification performance can reach 97% accuracy. So we choose it to decide article subject.
    According to the result of sentimental labeling, the sentimental dictionary we build has higher accuracy than NTUSD on judging word polarity. Moreover, we used ChineseWordnet and SentiWordNet to calculate the strength of word. So we can have more accuracy on calculate public’s sentiment. So we use these sentiment index to build prediction model.
    In the result of subject labeling, our accuracy is 95%. Meanwhile, In the result of prediction our accuracy is 85%. We also create the Visualization report for the nominee to understand the positive and the negative options of public. Our research can help the nominee by providing competitive wisdom.
    參考文獻: 林紘靖 (2009) 以模糊正規概念分析法進行自動化文件分類,國立成功大學資訊管理研究所碩士論文。
    李啟菁 (2010) 中文部落格文章之意見分析,臺北科技大學資訊工程系研究所學位碩士論文。
    王冠翔 (2012) 數位選戰對年輕選民行銷影響力比較之研究—以2012台灣總統大選為例,國立臺灣科技大學資訊管理所碩士論文。
    林育龍 (2013) 對使用者評論之情感分析研究-以Google Play市集為例,國立政治大學資訊管理所碩士論文。
    劉羿廷 (2015) 運用財經文本情感分析於台灣電子類股價指數趨勢預測之研究,國立政治大學資訊管理所碩士論文。
    趙玉娟 (2015) 政治網路口碑的情感分析:語意關連性之觀點,國立交通大學傳播研究所碩士論文。
    李謦哲 (2015) 應用FFCA結合情感分析探勘Facebook對議題之評論-以台灣2014九合一選舉為例,國立雲林科技大學資訊管理所碩士論文。
    科技部傳播調查資料庫. (2016). 全台上網成年人中 超過七成利用多種平台看新聞: http://www.crctaiwan.nctu.edu.tw/ResultsShow_detail.asp?RS_ID=39
    A. Abbasi, H. Chen, and A. Salem, "Sentiment Analysis in Multiple Languages: Feature Selection for Opinion Classification in Web Forums," ACM Trans. Inf. Syst., vol. 26, no. 3, pp. 12:1-12:34, Jun. 2008.
    Baccianella, S., Esuli, A., &; Sebastiani, F. (2010). SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. Paper presented at the LREC.
    Barrett, L. F. (1998). Discrete emotions or dimensions? The role of valence focus and arousal focus. Cognition &; Emotion, 12(4), 579-599.
    Computational Intelligence, 2009. AICI '09, 2009, vol. 3, pp. 81-85.
    D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, "RCV1: A New Benchmark Collection for Text Categorization Research," J. Mach. Learn. Res., vol. 5, pp. 361-397, Dec. 2004.
    G. Uchyigit, "Experimental evaluation of feature selection methods for text classification," in 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2012, pp. 1294-1298.
    G. Zheng and Y. Tian, "Chinese Web Text Classification System Model Based on Naive Bayes," in 2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE), 2010, pp. 1-4.
    H. Drucker, S. Wu, and V. N. Vapnik, "Support vector machines for spam categorization," IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1048-1054, Sep. 1999.
    H. H. Lek and D. C. C. Poo, "Aspect-Based Twitter Sentiment Classification," in 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), 2013, pp. 366-373.
    H. Sui, Y. Jianping, Z. Hongxian, and Z. Wei, "Sentiment analysis of Chinese micro-blog using semantic sentiment space model," in 2012 2nd International Conference on Computer Science and Network Technology (ICCSNT), 2012, pp. 1443-1447.
    H. Zhang, Z. Yu, M. Xu, and Y. Shi, "Feature-level sentiment analysis for Chinese product reviews," in 2011 3rd International Conference on Computer Research and Development (ICCRD), 2011, vol. 2, pp. 135-140.
    Tai, Y.-J., &; Kao, H.-Y. (2013). Automatic Domain-Specific Sentiment Lexicon Generation with Label Propagation. Paper presented at the Proceedings of International Conference on Information Integration and Web-based Applications &; Services.
    Thelwall, M., Buckley, K., &; Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62(2), 406-418.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., &; Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558.
    描述: 碩士
    國立政治大學
    資訊管理學系
    103356020
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0103356020
    資料類型: thesis
    顯示於類別:[資訊管理學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    602001.pdf2081KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋