政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/103455
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  全文笔数/总笔数 : 88613/118155 (75%)
造访人次 : 23481660      在线人数 : 160
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/103455


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/103455


    题名: A Smart Medication Recommendation Model for The Electronic Prescription
    作者: 黃鼎鈞
    贡献者: 資管博三
    关键词: NHI database;Medications;Inappropriate prescription;Diagnosis-Medication association;Smart medication recommendation model
    日期: 2014-11
    上传时间: 2016-11-07 15:18:10 (UTC+8)
    摘要: Background

    The report from the Institute of Medicine, To Err Is Human: Building a Safer Health System in 1999 drew a special attention towards preventable medical errors and patient safety. The American Reinvestment and Recovery Act of 2009 and federal criteria of ‘Meaningful use’ stage 1 mandated e-prescribing to be used by eligible providers in order to access Medicaid and Medicare incentive payments. Inappropriate prescribing has been identified as a preventable cause of at least 20% of drug-related adverse events. A few studies reported system-related errors and have offered targeted recommendations on improving and enhancing e-prescribing system.

    Objective

    This study aims to enhance efficiency of the e-prescribing system by shortening the medication list, reducing the risk of inappropriate selection of medication, as well as in reducing the prescribing time of physicians.

    Method

    103.48 million prescriptions from Taiwan's national health insurance claim data were used to compute Diagnosis-Medication association. Furthermore, 100,000 prescriptions were randomly selected to develop a smart medication recommendation model by using association rules of data mining.

    Results and conclusion

    The important contribution of this model is to introduce a new concept called Mean Prescription Rank (MPR) of prescriptions and Coverage Rate (CR) of prescriptions. A proactive medication list (PML) was computed using MPR and CR. With this model the medication drop-down menu is significantly shortened, thereby reducing medication selection errors and prescription times. The physicians will still select relevant medications even in the case of inappropriate (unintentional) selection.
    關聯: Computer Methods and Programs in Biomedicine · November 2014, Vol.117, No.2, pp.218-224
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1016/j.cmpb.2014.06.019
    DOI: 10.1016/j.cmpb.2014.06.019
    显示于类别:[資訊管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1-s2.0-S0169260714002533-main.pdf1546KbAdobe PDF423检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈