English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75002/106093 (71%)
Visitors : 19429061      Online Users : 573
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 政大學報 > 第83期 > 期刊論文 >  Item 140.119/102345
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/102345


    Title: 彩色影像之人臉角度分類
    Other Titles: Pose Classification of Human Faces in Color Images
    Authors: 林群雄
    Lin, Chiunhsiun
    Keywords: 人臉偵測;人臉角度分類;皮膚顏色分割;權值面具函數
    Face Detection;Face Poses Classification;Skin Color Segmentation;Weighting Mask Function
    Date: 2001-12
    Issue Date: 2016-09-29 17:02:17 (UTC+8)
    Abstract: 在本文中,我們建議的系統是由兩個主要部分組成。第一個部分是藉由皮膚顏色分割和等腰三角形為基礎來搜尋潛在臉的區域。我們首先讀取一張RGB彩色影像。先判斷此RGB彩色影像是否有複雜背景。若無,則我們將跳過「皮膚顏色分割方法」,而直接將原RGB彩色影像直接轉變成二值化的影像。若有複雜背景,則將藉由皮膚顏色分割,找出皮膚顏色區域。再將這個皮膚顏色分割後的影像轉變成二值化的影像。再藉由尋找等腰三角形的關係去得到潛在臉的區域。第二部分是要完成臉部角度分類的任務。我們首先將每一個潛在臉的區域,都做了尺寸標準化的處理。然後,藉由人臉權值面具函數獲得每一個人臉的正確位置。其次,再藉由方向權值面具函數判斷人臉的正確方向。最後,再藉由角度權值面具函數決定人臉轉的角度。實驗結果顯示約百分之九十九的成功比率,並且相對錯誤比率很低。
    In this paper, we introduce a novel approach for automatic estimation of the poses/degrees of human faces embedded in complicated environments. The proposed system consists of two primary parts. The first part is to search the potential face regions. First, if the input image contains complex background, then the potential face regions are gotten from skin-color- segmentation and the isosceles-triangle criterion that is based on the rules of "the combination of two eyes and one mouth". If the input image contains complex background, then we will use the input RGB color image to perform the human-skin color-segmentation task to remove the complicated surroundings. Then the result of the input image that is removed the complicated surroundings will be converted to a binary image. If the input image doesn't contain complex backgrounds, then we will skip the human-skin color- segmentation task. The input image will be directly converted to a binary image. Secondly, label all 4-connected components and detect any 3 centers of 3 different blocks that form an isosceles triangle. Then, clip the regions that satisfy the isosceles triangle criteria as the potential face regions. The second part of the proposed system is to perform the task of pose verification. In the second part, each face candidate obtained from the previous process is normalized to a standard size (60*60 pixels). Then, each of these normalized potential face regions is fed to the face weighting mask function to obtain the location of the face region. Next, the face region is fed to the direction weighting mask function to determine which direction the matching face region looks at. Last, the face region is fed to the pose weighting mask function to decide the poses/degrees of the human faces. The proposed face poses/degrees classification system can determine the poses of multiple faces embedded in complicated backgrounds. Experimental results demonstrate that an approximately 99% success rate is achieved and the relative false estimation rate is very low.
    Relation: 國立政治大學學報, 83, 197-222
    Data Type: article
    Appears in Collections:[第83期] 期刊論文

    Files in This Item:

    File Description SizeFormat
    fb160923122822.pdf1761KbAdobe PDF253View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback