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Abstract

This paper studied the cost allocation for the unfunded liability i a defined benefit pension scheme incorporating the
stochastic phenomenon of 1ts returns. In the recent literature represented by Cairns and Parker [Insurance: Mathematics and
Economics 21 (1997) 43]. Haberman [Insurance: Mathematics and Economics 11 (1992) 179; Insurance: Mathematics and
Economics 13 (1993) 45: Insurance: Mathematics and Economics 14 (1994) 219; Insurance: Mathematics and Economics 14
(1997) 127], Owadally and Haberman [North American Actuarial Journal 3 (1999) 105], the fund level 1s modeled based on
the plan dynamics and the returns are generated through several stochastic processes to reflect the current realistic economic
perspective to see how the contribution changed as the cost allocation period increased. In tlus study, we generalize the
previous constant value assumption in cost amortization by modeling the returns and valuation rates simultaneously. Taylor
series expansion 1s employed to approximate the unconditional and conditional moments of the plan contribution and fund
level. Hence the stability of the plan contribution and the fund size under different allocation periods could be estunated,
which provide valuable information adding to the previous works.
© 2002 Elsevier Science B.'V. All rights reserved.
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1. Intreduction
1.1. Preliminary

There are many indeterminate economic and demographic factors in pension funding such as the volatility of
plan returns. the inflation rates, the employees’ turnovers and the new entrants’ participation. Owing to these
uncertainties, it is inevitable for mismatches in plan valuation and sometimes wild margin of errors (i.e.. gains or
losses) in forecasting the plan financial status to occur. Hence the pension actuary has to properly plan a strategy to
allocate these mismatches in advance and disclose such information in the financial balance sheet when it occurs.
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In particular, in a defined benefit pension plan, the benefits are promised by the plan sponsor and the financial
soundness is especially vital for the plan participants.

This study investigates the stability of the cost allocation for unfunded liability and focuses on the uncertainty
arisen from the assumptions on plan returns and valuation rates. How to properly disclose the cost of a pension plar
under uncertainty has become a crucial issue in pension fund valuation. Since statistical fluctuations may appear an
inevitably generate difference between the expected and actual results, it is necessary to allocate such discrepanc
during specific time horizon. In order to reduce the impact of errors on the annual pension cost and stabilize the
volatility of the plan contribution due to stochastic fluctuations, it is important to monitor these errors. The pension
fund usually accumulates a large amount of assets in advance in order to match its promised obligations in the
future. Since the gains and losses affect the pension fund performance directly, careful investigation of the effect
using different amortization strategies is especially important.

Cairns and Parker (1997), Owadally and Haberman (19@2Yted fund returns as independently identically
distributed (i.i.d.) random variables to see how the contribution changed as the cost allocation period increased.
While evaluating the proportion/d;; of the unfunded liability to allocate the deficit by the spread method of
amortization; however, the discount factor is assumed to be constant. In this study, the force of interests used in
discount factors are modeled through several stochastic processes to reflect the possible economic perspectives. T
major improvements are summarized as follows:

1. The fund returns are modeled through several stochastic processes to géxiyer] (instead of Jay, since
R; are random for alt) in this paper, while constant valuation rate is used in previous work in computing
1.

2. The fund and contribution have been assumed to be stationary, i.e., the means of the fund and contributions ar
viewed as constants not depending on timéjowever, we do not restrict these assumptions.

1.2. Literature review

Researches in pension valuation in recent decades can be folBwlviers et al. (1982), McKenna (1982)
Dufresne (1988, 1989), Haberman (1992-1994, 1997), Mandl and Mazurova (1996), Gerrard and Haberman (1996)
Haberman and Wong (1997), Cairns and Parker (1997), Owadally and Haberman (1999, 2000)

Dufresne (1988, 1989jiscussed the contribution rate and fund level when the return rates of the plan’s assets
were modeled based on an i.i.d. sequence of random variables over a fixed time Hdéalzerman (1992, 1993)
compared different funding methods of computing the expectations and variation in fund sizes and contribution levels
with a time delay when real rates of return were assumed to be generated from i.i.d. and first-order autoregressive
(AR) processesdaberman and Wong (199dgrived the moment and variation in the contribution rate and fund
level under different pension funding methods. The real investment rates of return were modeled through a moving
average (MA) process considering the optimal allocation petiatherman (1997proposed the contribution rate
risk and discussed which periods for spreading valuation surpluses and deficiencies could be chosen to minimize
the risk.

Pension application of AR(1) models have been considereddélyerman (1994), Mandl and Mazurova
(1996), Cairns and Parker (1997Using MA(1) models can be found iMaberman and Wong (1997),
Bedard (1999), Owadally and Haberman (206&) both AR(1) and MA(1) cases (see, e.(Bedard, 1999)
and references therein). We extend their research by modeling the returns and valuation rates simultan-
eously through the plausible term structure, AR and MA time series models. The outline of this article is as
follows. Section 2describes the general framework and the notations used in our mo&sctions 3 and ,4ve
formulate several potential stochastic models for the interest rates in amortizing the unfunded liability to inves-
tigate the mean and the variance of the contribution level and the fund size. Numerical illustrations obtained
from Taylor series approximation based on an actual data are summari&egation 5 Section 6contains the
conclusion and identifies the potential areas for the future researchppgendix A we explain in detail our
approximation.



2. Allocating unfunded liability

The fund sizeF; may not be equal to the accrued liability Aat timer when actuarial cost methods including the
projected unit credit (PUC) and entry age normal (EAN) cost methods are used. As a result, the unfunded accrued
liability at time ¢, UAL,, occurs. The unfunded accrued liability is defined as the excess of the accrued liability over
the fund size, i.e.,

UALl:ALl—F[. (1)

Hence, a strategy must be set up to allocate this unfunded accrued liability and properly disclose such information
in the financial balance sheet. This means that the total contribution at timauld be split into two parts: the
normal cost N¢Cand a fraction of the unfunded liabilisyUAL ;, to compensate the mismatch under some allocation
strategies. In this study, the amortization is recomputed each year on the basis of the current unfunded liability.
Hence the annual contribution could be formulated as

TotalC, = NC, + k UAL,, (2

wherek depends on the allocation period and the valuation rate we chose to amortize the unfunded accrued liability.
In the literature, a number of ways of presentinigave been investigated:

(@) k = 1/azp , where the annuity is calculated using the (deterministic) valuation rate of interest, so that attention
s N
focuses onV.
(b) k itself is considered the parameter, most recently in a proportional control framework.

Also seeDufresne (1988), Cairns and Parker (1997), Owadally and Haberman (1999, 2000), Cairns (2000)
We follow the approacha) but extend it by allowingk to depend or and be based on the estimated for-
ward interest rate rather than on a constant value.Médbe the period of amortization, thenis formulated
by WmR, wheredmRt is the present value of the certain annuity payment from the beginning aftlihe
year to the end of th¢r + M — 2)th year calculated at assumed forward interest rtevherej = ¢, ¢t +
1,...,t+ M — 2. The widely used method is to amortize the unfunded liability with a series of constant dol-
lar payments. It means that UALs level amortized within the nex¥ years. We should recognize in advance
that the forward interest rat®; during the periodj up to j 4+ 1 might not be a constant. Insteall; be-
haves randomly, which can be described through a sequence of stochastic processes. If we have past data tc
which a parsimonious model has been fitted then we can employ the model to forecast the future ¥glue of
As a result,k can be formulated as a function of these forecast values. Theref,(z“rmlg7 has the following
presentation:

. -1
M j-1
! 1

—— =1+ [[———| - ©)
gl g, i 1+ Riyia

1

SinceM affects contribution size in pension funding, an optitiabecomes vital in cost allocation. To set up an
optimal rule, a performance measure is required. In this study, the performance criterion originally proposed by
Dufresne (1988and several subsequent authors is adopted using the first and second moments of the contribution
and fund level. The idea behind this approach is to investigate the relationship between the mean, the variance
of C; (or F;) and the chosen period of amortizatid#i simultaneously. This can lead to an optimal value of

M* at which VarC;) (or Var(F;)) reaches its minimum under the givéi(C,) (or E(F;)). The optimal spread

period M* obtained from this approach is beneficial to the decision maker in balancing his risk and expected
goal.
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3. Modeling the uncertainty

First, the constant force of interesthetween year andr + 1 is investigated. It satisfiesA R, = exp(s;). Then,
i.i.d., AR(1), and MA(1) models are employed as the force of interest to deriv@Maas a function oM. Thus,
k can be rewritten as the form accordinggq. (3}

-1

M j—1
k=14 expl - [[oia|]| - 4)
j=2 i=1
wheres; ;1 is the force of interest during the period-i — Luptor +i,i =1,2,... ,M — 1.

Let B, be the benefit outgo in year To simplify the calculations, the amount of benefit payments are assumed
to be provided at the beginning of each year. In other waBgss simulated at the beginning of yearThe plan
contribution is assumed to be made at the beginning of each year. The pensidi fundyears 4+ 1 is formulated
as

Fry1=€"(F; +C, — By). (5)

As mentioned above]; depends on the normal cost N&nd on the unfunded accrued liability UALCombining
Egs. (1) and (2Yields the overall contribution:

C[ = NC[ + k;(AL[ - FI) (6)

The normal cosNG, is previously computed by the given actuarial cost methods, such as EAN cost method, under
given actuarial assumptions including decrement rates, future salary increase and the valuation rate of interest. AL
andB; depend on these assumptions also. To focus on the issue of contributio®IN@nd B, are obtained based
onChang (1999)From the expectation and variance of the contribu@ipand the fundF;; in the following year,
the optimal solutionE (k;) can be determined.

In brief, the approach to determine the optimal cost allocation could be summarized as follows:

1. The contribution cash inflow and benefit payments are assumed to occur at the beginning of the year.
2. Initial NC;, AL,, B; and F; are obtained from the plan balance sheet in year
3. The corresponding equations for the contribution and fund are

C, =NC, +k (AL, — F,),  Fy1=€"(F, +C, — By).

4. Approximation

It is difficult to derive the moments aof; and F;1 directly. In order to investigate the contribution and fund
level, the variance of; is estimated through approximation. The multi-variable Taylor series expansion is adopted
to perform the estimation. Notations used in this paper are as follows:

Notation 1. Let f : R" — R be a continuous function. X is a point inR" where all second-order patrtial
derivatives off exist and ifY = (y1, y2, ..., y») IS an arbitrary point irR", we can write

1. D; f(X): the partial derivative of w.r.. the jth coordinate;
2. D; ; f(X): the partial derivative oD; f w.r.t. theith coordinate;

3. f1(Xs V) =Yy D f(X)yj, f(X:Y) = Y0y Yy Dy f(X)yiyj.

We hereby need to define some functions which will be used later.
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Definition 2. Let the forward rate = (8,841, - .. » 81+ m—2) be any point irRM~1 and f, g, andh be all real
valued functions defined dRM—1:

M j—1 -1 M i—1 -1
f(X) = 1+Zexp —28,+,-,1 , g(X)=é" 1—|—Zexp —Z(Sm,l ,
j=2 =1 j=2 i=1
M j—1 -1
hX)=e? [1+) expl = 8i4i1
j=2 i=1
Note thats;, 8,41, ... , Si+m—2 are random variables. Lé,t_H 1 be the expected value &f,;_1, fori = 1 2,.

— 1. Within the neighborhood b = (81, 8141, - .- » 81m—2), by Taylor series expansmrf(X) can be
esumated as

FX)Z F)+ [/ X —9).

Calculations of the error terms and numerical upper bounds from approximation are gippendix A From
now on, we will usef(8) + f (8 X — 8) g(8) +g (8 X — 8) andh(8)+h (8 X — 8) in replace of the above three
functions inDefinition 2

First, we derive the general forms of the expectations and variances of contribution and fund level. Then, plausible
stochastic models of interest rate are selected to investigate the relationship between interest rate assumption anc
spread period.

Several functions of; = 1/&M|,R, using the Taylor series expansion are summarized as

1. Ek) = f(3);

2. Vartk,) =3, ; Di f(<3)D f(8) x Cov(8,4i-1, 8r4j-1);

3. E(k, - &) = g(5); ; 3

4. Vartk, - €)= Y, . Dig(8)D;g(8) x COV(S4i—1. 814j-1);

5. Vare’) = Var(e’ + e‘Sr (8 —8;)) = e25f x Var(s,);

6. COME k, - &) = h(5) — & x g(8) =

Hence
E(C)) =NC, + (AL, — F) f(3), @
Var(Cy) = (AL, — F1)® x " D; f(8)D; f(8) x COMS1i-1, 8,1j-1), ®

ij

E(Fii1) = € (F, + NC, — B,) + g()(AL, — F,), 9)

Var(Fr41) = € x Var() x (F, +NC: = B)? + Y Dig3)D;2(3)
iJ
X COM(8;4i—1, 814j-1) X (AL, — F)?. (10)

In the following sections, we investigate the stability of the contribution and the fund size through their unconditional
and conditional means and standard deviations. In unconditional approach, we assume that there is no given prior
information and i.i.d., AR1) and MA(1) are employed to model the forward rate process. In conditional approach,

we use Vasicek model to characterize the forward rate pattern and calculate the means and standard deviations base
on the initial rate.
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4.1. Independent and identical distribution

Assume that the force of forward ratésforms an i.i.d. sequence of random variables wit(s,) = § and
Var(s;) = ‘752- The force of interests are assumed to resemble white ndsisesne (1988), Cairns and Parker
(1997), Owadally and Haberman (1998ated returns as i.i.d. to see how &) changed a8/ increases and gave
the condition when VAIC,) reached a minimum in i.i.d. case. The results allowing the plan returns and valuation
rates to be i.i.d. are summarized as follows:

1. E(C) NG, + (AL, — F,) f(3); )

2. Van(C,) = (AL, — F)? x of x Y M 1D; £ (6))%

3. E(Fiy1) = € (F, +NC, — B)) + ¢()(AL, — F); .

4. Var(F11) = € x 62 x (F, +NC, — B))2 + (AL, — F;)? x 02 x Z?’I:_ll(ng(é))z.

Note thats = é,6,...,9)isapoint inRM—1 in this case.
4.2. AR model of AR(1)

Consider the AR(1) model for the force of interest as follows:

8 —8=¢(6-1—90) +oe,

whered is the expected value 6f, |¢| < Lande,,r = 1, 2, ..., anindependent and identically distributed sequence
of standard normal random variables. Then we have
0,2 ¢|Z—S| 2

E(6;) =9, Var(s;) = 1_—¢2,

Haberman (1994), Mandl and Mazurova (1996), Cairns and Parker (1997), Owadally and Habermahg1899)
considered this model and focused on variation in the unconditional mometsaofd F; with ¢. The results
allowing the plan returns and valuation rates to be random are summarized as follows:

1. E(C;) =NC, + (AL, — F,)fz(S); ) ) o
2. VarCy) = (AL, = F)? x 1% x | SI5 D £ B)? + Loy Dif G)D; £ Bl
3. E(Fiy1) =€ (F + NG, — B) + g (AL, — Fp);

4. Var(Fi41) = e® x 25 X (Fi +NC; — B)%+ (AL, — F;)? x g

S D 8@)? + Loy Dig@)D;@)9 ).

COV(S;, SV) = 1_—¢20' .

4.3. Moving average model of MA(1)

The force of interest8, are assumed to satisfy the following relation:

8 =8+a —¢a_1, a ~IIDN(0,02),

whereq;, t = 1,2, ..., is an independent identically distributed sequence of normal random variables with zero
mean and variance?.
We have

o o —¢o2, if |t—s|=1
E(6;) =9, Var($;) = (1 + ¢“)o,, Cov(s;, 85) = .
0, otherwise
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and from the properties of the log-normal distribution

E@) =expd + 3(1+¢%0d).  Var(@) =exp25 + (1+ ¢H)o2)(exp((1+ ¢H)o2) — 1).
Haberman and Wong (1997), Bedard (19€8&cussed the variability of pension contributions and fund levels in
the model of MA returns. Employing the Taylor approximation, we obtained the following results:
1. E(C;) NG, + (AL, — F)) £ (3);
2. Var(Cy) = (AL, — F)? x {1+ 9202 N D; 302 = 2002 Y117 Dif $)Djsa f B ;
3. E(Fi41) = expd + 2(1+ ¢?)02) (F, + NC, — B)) + g($)(AL, — Fy);
4. Var(Fy1) = exp28 + (1 + ¢2)o2)(exp(1+ ¢?)02) — 1)(F, + NC, — B)? + (AL, — F})?

x |+ 9202 LD, 8302 — 2002 Y DjgB) D18 D) |-

4.4. Conditional approach through Vasicek model

The previous subsections contain the approximated unconditional results of the plan return and valuation rates
under i.i.d., AR(1) and MA(1) assumptions. These time series models are however restricted in reflecting the
economic perspectives in terms of time horizon. In this subsection, the concept of the term structure of interest rates
is employed to investigate the first and second moment of the plan contribution and fund level incorporating current
fund performance. Many stochastic interest rate models based on the term structure have been discussed. Among
these models, the general structure of single-factor models proposédiogk (1977), Cox et al. (1985), Hull and
White (1987)are widely employed in financial literatures. Expression for the general model is as follows:

dR = u(R,1)dr + w(R,1)dX, dX ~ N(0O,dr), (11)
whereu(R, t) andw(R, t) represent the drift coefficient and the diffusion coefficient, respectively, in the stochastic
processR(t). u(R, t) andw(R, r) are functions of the random variabl&sand:. If these independent variables

R and¢ are considered iq. (11) the complexity of this model would increase. Hene€R, t) andu(R, t) are
reduced to unknown constantandw in our study. Under this assumptidag. (11)is expressed as

dR = a(y — R)dt + pdX. (12)
The mean reverting process was originally proposetldsicek (1977)The drift coefficientx(y — R) shows that
the long-term structure of the plan return approaghesth velocity«. In real life, return rates are quoted at discrete

time intervals. Therefore, a practical lower boundat the basic time-step exists. In order to investigate the explicit
solution, the Vasicek model is rewritten into a discrete form as

AR =a(y — R)At+ pAX, o >0, AX ~ N(O, Ar). (13)

Discrete format of Vasicek model can also be modeled as AR(1) model. The proposed model can easily be extended
to reflect more realistic economic scenario. If we denote the instantaneous interest rate betweenlyeal: by
r:—1, thenR;4 ; can be expressed as:

1-(1-a)tt ;
Riyj = %(ay + pAX)+ (11— oc)”'lr,,l. (14)

The conditional expectation and varianceRf ;, givenR,_1 = r;_1 is derived as follows:
Ki+jle—1 = E(Rt+j|Rt—1 =rn_1)=[1-1- Ol)j+l])/ +1- Ol)j+l”t—1,

1—(1—a)itt )2
—>

2 _
04 ji—1 = Var(Riy j|Ri—1 =ri-1) = ( 5

and the covariance a&t;;; andR,; at givenR;_y =r,_1 is
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1- (11—t -1 -a)it?
Veti+jli—1 = COUR 4, Rt jIRi—1 =ri—1) = [ i[z ],02-

In the beginning of this section, we have defined three functiﬁnif,), g(f() andh(X). To reduce the complexity,
these three functions are used. IRt (R;, Ri41, ..., Riyp—2) € RM~1 [ : RM-1 . RM—1pe defined by

I(R) = (IN(L+ Ry), N+ Rix). ... IN(L+ Risp—2))

and the new expressions fgt g andi will be

M j-1 1 -1
F(R) = fUR) = |1+ —
Jky=1 2l
j=2i=
M j-1 1 -1
g(R)=g((R)=A+R) |1+ P—
8 § ' ; g 14+ Riyia
M j-1 1 -1
h(R)=h((R) = 1+ R)*| 1+ —
! JX_‘; E 14+ Rivia
x10° AR(1) model with phi=0.5 & sigma=0.02
38 T T T T T I
I —— delta=0.06
- —- delta=0.07
37F —— delta=0.08 H
361
35K

w
~
T

Mean of Contribution
w w
N w
T T

w
N
T

291

28 I ! 1 \
1.2 1.25 13 1.35 1.4 1.45 1.5 1.55 16

Standard Deviation of Contribution x10°

Fig. 1. Graph shows the pattern of mean versus standard deviation of contribution in AR(1) model with each point on the curves related to the
identified values oM at timer = 1997.
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Using this approach, the approximationsfofz and/ can be obtained. By noting that

FR)Y~ f(i) + f/(i: R — b,

whereft = (-1, e41je—1s - - - » he+M—2)t—1) IN RM-1 andR isin the neighborhood qf and we have
M-1
FGis R =) =) DjfGi) (R j1— purj-1-1).
j=1

Before investigating the optimal amortization period for the unfunded liability, the conditional expectation and
variance ofC; and F; ;1 using the Taylor series expansion are as follows:

E(C/|Ri—1 =r,—1) ® NC, + (AL, — F,) f (1),
Var(C;|R,—1 = r,—1) ~ (AL, — F)®Var(f'(ji; R — 1))

M-1
= (AL, — F)? | D (D f(i)202 1y + D> Di f@)D; f(@)Veti-tetj-10-1 | -
j=1 i#j

E(F41|Ri—1 =ri—1) ~ (1 + -1 (F, + NC; — By) + (AL, — F1)g (i),

x10° MA(1) model with phi=0.5 & sigma=0.02
38

T T T T T T

I
— delta=0.06 é
-~ delta=0.07

3.7H —— delta=0.08 '

36

w o
=~ 3
T T

Mean of Contribution
w
T

3.2+ -
31r i
3k _
29 _
28 " | 1 1 | | | |
4 5 6 7 8 9 10 11 12
Standard Deviation of Contribution x10°

Fig. 2. Graph shows the pattern of mean versus standard deviation of contribution in MA(1) model with each point on the curves related to the
identified values oM at timer = 1997.
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Var(Fiy1|Ri—1 = ri—1) = Var[(1 + R (F; + C; — By)]
= Var[(1+ R;)(F; + NC; — B; + k;(AL; — F;))]
= (F; + NC, — B)®Var(1+ R) + (AL, — F)*Var(k,(1+ Ry)) + 2(F; + NC, — B))(AL, — F)

xCOV(1+ Ry, k(14 Ry)) ~ (F; + NC; — B))%07 + (AL, — F;)°

m-1
x| > (Djg()Var(Rj-1) + > Dig(ii)D;g(A)COM(Ry4i-1. Riyj-1)
LJj=1 i#]

+2(F, + NC, — B))(AL, — F)(h(ji) — (L + u)g(i)) = (F, +NC, — B)?02 + (AL, — F,)?

[m-1
x | Y (DiE)%0f a1+ Y DigG D iti-1iyj-1j-1

| j=1 i#]

28X 10° Vasicek model with alpha=0.3, gamma=0.08 & r=0.06
- T T T T T I
— rho=0.02

37 H
36 —
35 =

Mean of Contribution
w w w
[N w ~

T T T

w
-
T

29

T

2.8
0 14

Standard Deviation of Contribution x 10°

Fig. 3. Graph shows the pattern of mean versus standard deviation of contribution in Vasicek model with each point on the curves related to the
identified values oM at timer = 1997.



5. Numerical illustrations

In this section, we illustrate and evaluate the numerical approximation propoSedttion 4in cost allocation
for a realistic pension plan. Taiwan public employees retirement system (Tai-PERS) is used for illustration purpose.
The cash flows of the benefit payment, accrued liability and normal cost in 20 years starting from 1997 are estimated
based on 50 dynamic simulations using EAN cost method and open group assumption. Detailed benefit scheme
and the procedure in performing the calculations can also be fouGtiamg (1999, 2000)rhe specific pension
financial information of this plan at timre= 1997 is specified as follow®; = 106, 636 560, AL, = 585, 530, 240,
NC;, = 264,658 176, F; = 373 211,585 (measured in NT dollar). Since Tai-PERS provides a comprehensive
compensation plan for its member and the funding policy is constrained by the current government regulation,
this scheme starts with a significant deficit (i.B., < AL,). The numerical results using stochastic models (i.e.,
unconditional approach using AR(1), MA(1) and conditional approach using Vasicek model) in generating the
forward rates are investigated in detail.

Figs. 1-6illustrate the estimated mean and standard deviation of contribution level and fund size based on these
modelsFig. 1shows how the standard deviation and expected contribution varigsunder AR(1). The expected
interest rates are set at different values to monitor the impact on funding stability given various cost allocation

x10° AR(1) model with phi=0.5 & sigma=0.02
7 T T T T T I T
2
//
2 /
y / yd
6.8 2 J/ .
s /"’
/
/ ya
//’ 7 ) /
L / / _
6.6 / , 43
/ s /
s Z /
o 3
g s yd
[ / /
5 6.4 A i
c Y p
5 4 /
= 5
/
A
621 /6 y
6 /‘7
66'8
oF f 1
—— delta=0.06
delta=0.07
—— delta=0.08
58 | | | | I
1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.4

Standart Deviation of Fund x10°

Fig. 4. Graph shows the pattern of mean versus standard deviation of fund in AR(1) model with each point on the curves related to the identified
values ofM at timer = 1997.
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periods. It shows that the variances of contributions are higher when interest rates increase in each given scenaric
Increasing the cost allocation period fromi = 2 results in decreasing the expected contributions, while the
variances of the contribution increase and then decrease graduallpafter6. Based on outcomes from these
scenarios, the plan manager can choose an opfifretcording to his aimed financial status.

Fig. 2 shows how the standard deviation and expected contribution varid$ bgder MA(1). The expected
contributions decrease and their variance increase when larger M is used in amortizing the unfunded. There are
no significant difference on the patterns between different expected interest rd&&p.3nVasicek model is used
to investigate the funding stability. The volatility of the interest rates are varied to analyze the mean and variance
of the contribution at differen¥ and investigate the optimal cost allocation. The volatility of the returns is set to
be 4%, 3% and 2% to monitor the funding stability. It shows that variance of the contributions are larger when
volatility of interest rates increases. Changing the cost allocatioasults in decreasing the expected contribution
and increasing in its variation. Whe¥"t increases and more than 6, the variance increases dramatically. Hence,
increasingM over a certain level fund manager can suffer large funding instability.

The numerical results for the stability of fund sizes are plotteHigs. 4—6 Fig. 4 shows that the variance of
fund size decreases when larger cost allocatibis used under AR(1). Then different interest rates are selected to
analyze their impacts on the stability of fund. It shows that variation increases when interest rate increases. Using

x10° MA(1) model with phi=0.5 & sigma=0.02
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Fig. 5. Graph shows the pattern of mean versus standard deviation of fund in MA(1) model with each point on the curves related to the identified
values ofM at timer = 1997.
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Fig. 6. Graph shows the pattern of mean versus standard deviation of fund in Vasicek model with each point on the curves related to the identified
values ofM at timer = 1997.

large M in allocating the unfunded liability results in smaller variation in fund skig. 5shows that the variance
of fund size decreases when larger cost allocatiois used under MA(1). The pattern is similar with that in AR(1),
except some small differences in shape.

Based on the numerical investigation of these results, the shapes of variation of fund level and contribution as
function of M shown inFigs. 1 and 4or AR results resemble those ldberman (1994), Cairns and Parker (1997)
While, the shapes presented for MA results have also shown the similar patterns with tHasbeohan and Wong
(1997), Bedard (1999%pr Figs. 2 and 5

Fig. 6 indicates that larger volatility of the interest rates in Vasicek model generates larger variation in fund
sizes. AsM increases in cost allocation, larger variation results in fund level. Hence select Mrgexy cause
volatile fund levels, while employing smalléf in allocating the costs may be intervened by the political reasons
and confront the plan short term insolvency. Hence the decision maker need to carefully measure the trade-off and
reach a reasonable conclusion.

6. Concluding remarks

This paper studies the mean and standard deviation of the contribution and fund under several plausible stochastic
models. The Taylor series expansion is used in approximating the mean and variance as functions of the allocation
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period M. The empirical results presented in this paper can provide valuable information in cost allocation. The
optimal contribution can then be determined from the trade-off between the expected contribution and the associatec

variation.

In practice, the valuation actuary may need to select the proper stochastic model for the interest rates before he
sets up the cost allocation period for the unfunded liability. In future research, these results will be extended to

monitor the optimal cost allocation period in a more general framework.

Appendix A. Theerror terms of f(f(), g(f() and h(i’)

Consider the neighborhood bf by the Taylor series expansion, we have

- - I .
f(X)=f(5)+f/(3;X—5)+—,f”(Zx;X—B),

-

B, - - 1
gX) =g +&@ X —5)+ g”(Wx, —34),

h(X)=h@)+ 1@ X —8) + h”(Ux, X -9,

wherer, W andU are on the Ilne segment Wlth two endpomtandx If f(X) g(X) andh(X) are replaced
by f(S) + f (8 X — 8) g(S) +g '(3; X - 8) andh(é) +h (8 X - 8) respectively, then the error terms will be
(1/2')f”(Zx, X — 8), (1/2')g”(Wx, - 8) and(1/2')h”(Ux, — 6) accordingly. We could estimate the error
terms and show that the error terms could be quite small \Axhesrsufnmently close td.

Lemma 3. Recall thatX = (8,811, ... . Srymr—2) ands = (5, 41, ... . Srrmr—2). Let(1/2) f"(Zy: X — 8),
(1/2')g”(Wx, X — 5) and(1/2')h”(Ux, — 3) be defined as above. Then

" _ 1. .2vM-1 M-1 ro(i,M—1) 2rp(0,j—Dro(i,M—1) ro(i,j—1)
L3 @aX =8| < 3 SIS (Giowt + o) + Tl e for

|8t+/—1_5t+/—1| <r,Vj =1,2,... ,M—l

1 .y _ % 2\ M-1 M-1 ro(i,M—1) 2r2(0,j=Dro(i—=1,M—-2) ro(i—1,j—2)
2 ‘Z!g (Was X 5)‘ < 2r'Eis [Zi—l ((’1(0M—1))2 T oM-D)3 )+Zz =i+1 m]

M—=1 2rp(j—1.M=2)rp(1,M—1) M—1 rp(i—1.M—2) St , ‘
+ (Z, =1 (AOM-1)? ) (Z —1 - 1))2) + oD O i1 = Sl <o
Vji=12. —1.

/" _ 2\ M-1 M-=2 5, +r [ r2(i—1,M—2) 2r2(0,j—Drp(i—1,M—2) ro(i—1,j—2)
‘ WU X 5)’ <2t Xl [Z/ e ((r1<0M D2 T (n0M-1)? )+Z/ =i+1 (ry (O.M - 1>>3]
M-1 ro(G—LM—=2) | 2ra(j—1,M—2)ro(1,M—1) M=1 [ 20% rpi—1M—2) 24260+

+ 2ja St <(,1(0,M71))2 + (r1(0.M—1))3 ) + Xin (r1(0,M—1))? t oM

1841 — &j—1l <r¥j=1,2,...,M—1,where

J n J n
ril, j) = Zexp(— D Gipi-1+ r)) cizi o)) = Zexp(— D Gri-1— r)) s
n=i n=i =1

=1

Proof. We only prove the case Q_‘f(f(); the others can be obtained by the same technique.
LetS(t,t4+j—D=exp—Y ) _184n-1.j=12... ., M—-1,8¢t1t-1)=1,
Zii, =Y _St,t+n—-1), i, j=12...,M—1 andj>i.



Thus
Z:(j,M - 1)

- 1 -
f(X)=m, Djf(X)=m,J=1,2, M -1,
) D; f(X) (Z,0. M —1))? , if j<i
D f 00 = Z,G, j—1 22,0, —1Z, (i, M —1
le()_(')_i_ t(la.]_ ) l( , ] — ) 1(19 - )’ |f ]>l

(Z(O,M—1)3 (Z/(0, M —1))3
FOr(8i4j—1— d4j-1l <r,¥j=1,2,... , M —1,
we have,
Si4jml— 1 <8igj1 < Sqjo1+7
= —rpjo1+7) < —8qj-1 < — (S jo1—1)
= exp(—(8r1j-14 1) < eXp(—81-1) < eXp(—(4j-1— 1))

= exp(— Z(Stﬂ_l + r)) < St t+n-1) < exp(— Z(S,H_l - r))
=1

=1
J no J no
= exp(— Y Grvjat r)) <Zii. )<Yy, exp(— D Gryj1- r)) :
n=i =1 n=i =1
ie.,
rl(i7 .]) < Zl(iv .]) < VZ(i, J)
By a straightforward process, we get an upper bountﬂ]fﬁﬂ!)f”(fx; X — &)

1 " . v s
zf (Zy; X —90)
— M— . . . M-1 ..
ro(i, M — 1) 2r2(0, j — Drp(i, M — 1) ro(i, j — 1)
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The upper bounds afL/2!) ”(Z,; X — ) and the error ratiogl/2!) f"(Zy: X — 8)/f(3) given M between 2 and
20 andr = 0.001, 0.005, 0.01 and 0;02 are evaluated. The results are listelchbie 1for numerical illustrations.
In our numerical calculations, we set= 0.06 x (1, ... , 1)1 wm—1) for simplicity.
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