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ABSTRACT

The particular issue with which this paper is concerned is diagnostic
inference. That is, given the occurrence of a set of outcomes/results/symptoms,
one has to infer to what extent is a particular action or event responsibie for
the observed effects. Einhorn and Hogarth (1982) argued that the essential
aspects of such inferences are that they are causal rather than correlational,
backward rather than forward (one goes from effects to prior causes), concerned
with specific rather than the general cases, and constructive rather than
nonconstructive (one can synthesize, enlarge, or otherwise develop new
hypotheses). They further argued that the most common statistical model
(e.g., Peterson & Beach, 1967) involving inferences does not consider these
four aspects, and they developed a new model to describe how people assess
the likelihood that one of two hypotheses is true on the basis of varying amount
of evidence for each. I shall show, however, that their claims against the usual
statistical model are unfounded and that they, in fact, misconceive the type
of statistical problem with which they are faced. They think they are dealing
with point estimation problems, when, in fact, the diagnostic problems with
which they are dealing are Bayesian problems. Furthermore, even though
they concluded that their model fitted the data reasonably well, some
methodological considerations provide questions about their conclusion. The
main purpose of this paper is to critique Einhorn and Hogarth’s arguments
and model in statistical and methodological terms.
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Criticism against Einhorn and Hogarth’s theory of
diagnostic inference

Einhorn and Hogarth (1982) proposed a theory of diagnostic inference
which involves the assessment and generation of casual hypotheses to account
for observed evidence. They define diagnostic inference as a constructive process
that is causal, backward in its direction, and concerned with specific cases. A
model was developed by them for describing how people assess varying amounts
of evidence for each. They suggested that subjects might process information
with an anchoring and adjustment strategy. Specifically, they anchor on the
evidence observed and adjust on the basis of the imagined evidence that might
have been. Several factors influence adjustment, e.g., the total amount of evidence
at hand, attentional shifts due to rephrasing likelihood questions, the number
and specificity of alternative hypotheses, and perception of missing evidence.
They performed experiments to test their theory and model and concluded that
the model fitted the data reasonably well. However, some statistical and
methodological © considerations provide questions about their model and
conclusions.

First, Einhorn and Hogarth argued that the statistical model is a-causal,
forward in direction of inference, and concerned with the general case, thus it
is inappropriate as a model for diagnostic inference. As they state,

J“the statistical model does not formally consider causal ideas in its language.

. statisticians do not encourage causal thinking, as for example in warning
that correlation does not imply causation (although what does imply causation
is never made clear). (p.1)

Statistical methods are greatly concerned with forecasting events or con-
sequences and can thus be characterized as involving ‘forward’ inference.
. . . We call inferences that are both backward and causal, ‘diagnostic’. (p. 1)

Statistical concepts such as average, variability, relative frequency, population,
and so on, clearly indicate that the domain to which inferences are being
made are aggregates of some sort. Therefore, one is concerned with the general
case or with classes of cases. . . . as when considering one-of-a-kind events
(such as the likelihood of Russian invasion of Poland), controversy exists
regarding the meaning and meaningfulness of probability statements. Now
consider the domain of inference of the lawyer, detective, or historian. Here
one is concerned solely with the specific case — did Mr. X commit the crime?
Is Mr. Y responsible for the accident? What were the causes of World War
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1?7 ... the relevance of such evidence is often questioned on the grounds
that the specific case is not a member of this or that class. (p.2)”

However, statisticians are often concerned with causal thinking. Such thinking
is involved in the concept of experiment; for example, in particular, experimental
control enables scientists to test for causal relations. Consider the direction of
inference, statistical methods are concerned not only with forward inferences,
but also backward inferences. In fact, statistics is directionless and timeless.
The purpose of statistical method is to evaluate evidence regardless of whether
the question is concerned with forward or backward inference. Furthermore,
the claim with regard to the domain of statistical inferences is not necessarily
true. In fact, there are examples that statistical analysis can be applied to inference
which is causal, backward, and concerned with specific cases and the probability
statements are meaningful for them. For example, Mosteller and Wallace (1972)
tried to settle the disputed authorship of several of the Federalist papers. These
papers were written by Alexander Hamilton, James Madison, and John Jay to
try to convince New York State to ratify the U.S. constitution. For twelve of
the papers there has been uncertainty whether the author was Hamilton or
Madison. Mosteller and Wallace differentiated the two authors on stylistic features
of the papers. It was found that a Bayesian analysis yielded overwhelming support
for Madison’s authorship of the disputed papers. Thus the study of Mosteller
and Wallace provided a good example that statistical models are appropriate
for dealing with inference which is causal, backward, and concerned with specific
cases.

Einhorn and Hogarth proposed a model for the evaluation of the net strength
of evidence. Suppose subjects are asked to assess the likelihood that one of two
hypotheses is true. Consider that there are n equally strong pieces of evidence
that consist of f favorable and ¢ unfavorable arguments, where n = f + c. Moreover,
let p = f/n, the proportion of favorable evidence. They proposed that one would
evaluate the net strength of evidence on the basis of an anchoring and adjustment
process. Specificially, it is assumed that in evaluating conflicting evidence, one
first anchors on p, and adjusts to p by imagining a piece of favorable or unfavorable
evidence. Einhorn and Hogarth suggested that several factors would affect the
adjustment. One factor is the amount of evidence on hand, n. They proposed
that people would anchor on p and adjust for n by imagining a worse case in
which one f is shifted to one ¢. The model can be written as

Sn(f:c) = a,(f/n) +a, ((f=1)/n) 1)
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where Sn(f:c) is the net strength of f and ¢ pieces of evidence, a, is the weight
for the anchor, and a, is the weight for the adjustment. Assuming a, + a, = 1,
equation (1) can be rewritten as

Sn(f:c) = a,(f/n) + a, (f—1)/n)
= {a;f + a,f — a;)/n
(fa;*az) — az)/n
=p — a;/n 2

Thus the model suggests a tradeoff between p and n such that one would accept
less p for greater n. That is, the model predicts that as the total amount of
evidence increases, the net strength approaches p as an asymptote with a rate
determined by a,.

However, when p = 0, the equation results in net strength being negative,
which makes no sense. Thus they modified the equation when p is at, or close
to zero. When 0 < p < Pc, where Pc represents some small value of p, they
proposed that people would adjust for n by imagining a favorable case instead
of imagining an unfavorable case. Then the equation becomes

Sa(f:c) = a;(f/n) + a,((f+1)/n)
=p ta/n 3)

Thus, when p =0, Sn(f:c) = a,/n. Asn — oo, net strength approaches an asymptote
of zero. And the general equation, which they called the evidence function, can
be written as

Sn(f:c) = p + B(a/n) 4)
where f ={ lif p<Pc
—1ifp>Pc
Einhorn and Hogarth considered several problems which varied in the values
of n, f, and c to illustrate their theory and model. However, whether their

arguments are supported in these problems is questionable. One example they
gave is as follows

“imagine that there has been a hit-and-run accident where f witnesses say
the offending car was blue while ¢ witnesses claim it was green. We are
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interested in the evaluation of the likelihood that a blue car caused the
accident as a function of f, p, and n... . . for example, consider that there
were only two witnesses who both said that the hit-and-run car was blue
vs. a situation in which 9 witnesses said blue and one said green. Many people
find the latter evidence stronger than the former in supporting the proposition
that a blue car caused the accident. Why? We argued that when the total
amount of evidence is meager, it is quite easy to imagine a different result
by simply changing one piece of evidence. Thus, an outcome of (2:0) could
easily be (1:1); or, (2:1) become (1:2) if only one witness changes his/her
mind. (p.9)”

Einhorn and Hogarth assert that subjectively evaluating the (9:1) case as stronger
evidence than the (2:0) case for hypothesis ‘blue’ is statistically improper. They
do so because they see the problem, statistically, as one of point estimation.
If one grants, for the purpose of argument, that the statistical problem is one
of point estimation, their argument is shakey when one considers confidence
intervals about the point estimates. Given the evidence that 9 witnesses said
blue and one said green (n = 10, p = .9) vs. a situation in which only two witnesses
both said blue (n = 2, p = 1.0), what is the 95% confidence interval for the estimate
of the proportion of witnesses who will testify that a blue car caused the accident?
For large samples, one can use observable proportion to estimate f’p_. However,
for small samples, one can get confidence intervals by reading tables which give
confidence intervals for the probability of success in small samples (e.g., Hollander
& Wolfe, 1973). Thus, for n = 10 and p = .9, the 95% confidence interval is the
interval between .9975 and .5550. Forn =2, p= 1.0, the 95% confidence interval
is the interval between 1.0000 and .1581. Thus, the 95% confidence interval
for evidence (9:1) includes only values greater than .5 while that of evidence
(2:0) includes values less that .5, which can be interpreted as indicating that
the evidence (9:1) is stronger than the evidence (2:0) in supporting the pro-
position that a blue car caused the accident.

In fact, however, Einhorn and Hogarth mispercieve the problem. The
problem presented is a Bayesian problem with incomplete information. According
to the problem, there are two mutually exclusive and exhaustive hypotheses:
a blue car caused the accident (HB) or a green car caused the accident (HG).
One is asked to evaluate the likelihood of HB given the observed evidence, that
is, P(HB | D). However, the priors, P(HB) and P(HG), and the likelihood of each
piece of evidence given that each hypothesis is true, P(b|H), P(giHB), P(b| HG),
and P(g|HG), are not given in the problem. A way to assign probability under
uncertainty is to use the maximum entropy rule (Jaynes, 1968; Rosenkrantz,
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1983). Following this rule, priors are assigned in such a way as to be consistent

with the constraints of the relevant variable, but beyond that they must maximize

entropy. The maximum entropy priors can be derived by maximizing the entropy,
a

or uncertainty, of the prior probability distribution P(Hj) = — Z P(Hj) In P(Hj)
i=1

subject to the constraint that the sum of the probabilities must be unity

a
(2 P(Hj) = 1). Thus, one should maximize the following system of equations
=1
with respect to the P(Hj):

F[P(Hj)] = -}E P(Hj) In P(Hj) + \ T P(Hj)

a
=1 j=1

where X is a LaGrange mutiplier. It is nontrivial but easy to show that:
P(Hj) = e* !

It follows directly that, the maximum entropy priors for the case in which the

only constraint is }3 P(Hj) = 1 are 1/a, where a is the number of mutually exclusive
j=1
and exhaustive hyi)otheses in question.

In Einhorn and Hogarth’s problem, a = 2. Therefore, the derived maximum
entropy priors are P(HB) = 1/2 and P(Hc ) = 1/2. However, it is not appropriate
to use the maximum entropy rule to get P(b|HB), P(g|HB), P(b|HG), and
P(g|HG) for the cab problem discussed above. To use the maximum entropy
rule would be equivalent to assuming that eyewitness testimony is not informa-
tive. But we usually believe that eyewitness testimony does give us some informa-
tion. The impact of each piece of evidence given that each hypothesis is true
is subjective and may depend on some variables such as the reliability of the
witness (e.g., Schum, 1980), the dissimilarity between the hypotheses (e.g.,
Einhorn & Hogarth, 1985), etc.

If the problem is reduced to the symmetric binomial case, that is, P(b| HB) =
P(glHG), P(g|HB) = P(b|HG), and P(b|HB) + P(g{HB) = P(b|HG) + P(g{Hg) =
1, diagnosticity is a function of the difference between the number of favorable
and unfavorable witnesses. The difference of evidence (9:1) is 8 and the difference
of evidence (2:0) is 2. Again, the evidence (9:1) is stronger than the evidence
(2:0) in supporting the proposition that a blue car caused the accident.
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Einhorn and Hogarth suggested that one of the implications of their model
is that the addition of positive evidence has less effect on the net strength of
evidence than the reduction of an equal amount of negative evidence when a
majority or neutral position is evaluated (i.e., 2f 2 n). As they state,

‘.

. compare the addition of one positive argument to make evidence of
(3:2) into (4:2), vs. the reduction of one negative argument to yield (3:1).
According to probability theory and our model, (3:1) is stronger evidence
than (4:2). (p. 13)”

However, the statements are not necessarily correct. Although their model predicts
that (3:1) is stronger evidence than (4:2), pro‘bability theory may not. In the
symmetric binomial case, the Bayesian model suggests that (3:1) and (4:2) are
equally informative because the differerice between the number of favorable
and unfavorable witnesses is two for both cases. Again, Einhorn and Hogarth
mispercieved the problem as point estimation and therefore suggested that (3:1)
has larger p than (4:2).

Einhorn and Hogarth further suggested that their model implies that the
deletion of negative arguments results in a loss of n such that large downward
adjustments to p may occur. That is, deletions that substantially reduce n can
lower net strength and thus work against increases in p. However, they argued
that probability theory and their model diverage on this point. They stated:

“consider initial evidence of (1:1) and compare (2:1) to (1:0). If a, = 4,
Sn = .58 and Sn = .60, which are much closer than would be the case if
probability were used as a measure of evidentiary strength. (p. 13)”

In fact, probability theory suggests the same thing, that is, (2:1) and (1:0) may
be equally informative according to the Bayesian model.

In the process of developing their model, Einhorn and Hogarth proposed
a minimum Pc¢ (a small value of p) in order to get rid of the undesirable result
that net strength is negative when p = 0. The development of Pc resulted from
an ad hoc assumption. Although ad hoc assumptions are not always bad (e.g.,
Kitcher, 1982; Popper, 1959), the introduction of Pc seems scientifically improper.
For example, Popper suggested that ad hoc hypotheses are acceptable when their
introduction does not decrease but rather increases the degree of falsifiability
or testibility of the theory. That is, the modified theory should rule out more
logically possible events and thus restrict the range of permitted events. However,
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introducing Pc into Einhorn and Hogarth’s theory does not increase the falsifi-
ability of the theory. The theory with Pc does not narrow the range of confirming
events in the empirical world.

Einhorn and Hogarth further proposed a second factor which influences
adjustments to p, namely, whether one is evaluating a particular hypothesis or
its complement. Their model specifies that attentional shifts due to rephrasing
likelihood questions will lead to the subadditivity of complementary probabilities.
They postulated it a ““focus effect” which can be expressed as

Sn (c:f) < 1 — Sn(f:c) or
Sn'(c:f) < 1 — Sa(f:c).

When p and (1 —p) are greater than Pc,

Sn(f:c) + Sn(c:f) = (p—a,/n) + [(1—p)—a,/n]
=1 — 2a,/n

thus the focus effects occurs if a, > 0. However, when either p or (1—-p) is less
than or equal to Pc,

Sn(f:c) + Sn'(c:f) = (p—ay/n) + [(1—p)+a,/n] = 1 ,

thus no focus-effect should occur.

Einhorn and Hogarth ran experiments to test their model and examined
the effects of the amount of evidence on strength of evidence and tested for
focus effects. Thirty-two subjects were presented with a set of scenarios that
involved a hit-and-run accident seen by varying numbers of witnesses who were
asked to judge how likely the accident was caused by a particular colored car.
Each stimulus contained the same basic story but varied in the total number of
witnesses, n, the number of witnesses saying it was a green car, f, or a blue car,
¢. and whether one was to judge the likelihood that the majority or minority
position was true. For aggregate analyses, the predicted mean net strength, :Sn(f :c),
can be written as

§n(f:c) =p —4, (I/n)

where 4, is the estimated weight for the hypothesized adjustment process.
The parameters in the model, a, and Pc, have to be estimated from the
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data. Pc can be located by finding where San > p at small n, since the sign of
a, is positive when p < Pc in their model. However, they noticed a problem
in estimating a,. As they state,

“A statistical problem in estimating a, from (9) [Sn(f:ic) = p — a,(1/n)]
is that p and 1/n must be highly correlated since p = f(1/n). This makes the
determination and testing of a, problematic. (p.21)”

They considered that they had a multicolinearity problem in estimating a,.
However, the argument that p and 1/n must be correlated is wrong. The amount
of evidence should influence the adjustment to p but not the p value itself.

Because they perceived that p and 1/n are highly correlated. They used a
two-step procedure to handle this “multicolinearity problem”. First, Sn was
regressed onto p to test for the importance of p as an anchor. Then by regressing
the difference, p — Sn, onto 1/n, they estimated a, and tested whether the
hypothesized adjustment process predicts the differences between mean net
strength and p. In the first step, they got a high correlation between Sn and
p (r = .98) and interpreted the result as indicating people anchor on p in the
assumed evaluation process. However, the analysis does not have to give support
for anchoring on p. In the Bayesian symmetric binomial case, the strength of
evidence and p are perfectly correlated. It is possible that people anchor on
prior probability and the result that Sn correlates high with p still can be
found.

On the whole, Einhorn and Hogarth showed that their model fits the data.
However, the fit is not surprising since almost any theory intelligently (not
perversely) conceived will fit the data reasonably well (e.g., Dawes & Corrigan,
1974). A better strategy is to compare models in order to discover which model
fits the data better under that particular condition (e.g., Commbs, Dawes, &
Tversky, 1970; Platt, 1964).

A third factor which influences adjustments to p is the number and specificity
of alternative hypotheses. Einhorn and Hogarth suggested that a diffusion effect
occurs when the total amount splits or diffuses into multiple categories or
hypotheses. They argued that the diffusion effect violates the evaluation of
evidence in probability theory. As they state,

“ . recall our hit-and-run scenario and imagine that four witnesses reported
a green car and four reported the color as blue, ie., (4G:4B). Now consider
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a second situation in which four witnesses reported green, two reported blue,
and two reported red; i.e., (4G:2B:2R). In this second case, is it more, less,
or equally likely that a green car was responsible for the accident? We
hypothesize that for many people, the strength of evidence for a green car
will not be the same. . . . Note that a diffusion effect violates the evaluation
of evidence in standard probability theory. That is, the probability of a
hypothesis should be unaffected by the number or composition of alternative
hypotheses. Thus, if the probability of some hypothesis H is p, the fact
that H is made up of one or more alternatives is irrelevant to the probability
of H (and therefore H). (p. 26)”

Again, the argument against probability theory is wrong. According to the
Bayesian model, the probability of a hypothesis is affected by the number of
alternative hypotheses. (4G:4B) and (4G:2B:2R) may provide different results
in evaluating the likelihood that a green car caused the accident. With evidence
(4G:4B), it is assumed that one has to evaluate the strength of evidence in
supporting hypothesis HG between two hypotheses, HG and He. On the other
hand, with evidence (4G:2B:2R), it is assumed that one has to evaluate the
strength of evidence in supporting hypothesis HG among three hypotheses, Ha,
HB, and HR. The maximum entropy priors in the former case are P(HG ) = 1/2
and P(HB) = 1/2, those in the latter case are P(Hc) = 1/3, P(HB) = 1/3 and
P(HrR) = 1/3. Thus the two situations can lead to different results in evaluating
the strength of evidence in supporting hypothesis HG. For example, when two
hypotheses, HG and HB, with evidence (4G:4B), are considered, and P(g|Hc) =
P(b|HB), the posterior probability of HG is .50 since the difference between
the nurhber of favorable and unfavorable witnesses is zero. When three hypotheses,
HG, HB, and HRr, with evidence (4G:2B:2R) are considered, and the conditional
probabilities assumed to be P(g|Hc) = P(b|Hs) = P(r|Hr) = .80, P(g|HB) =
P@lHR) = P(b|HG) = P(b|HR) = P(r|HG) = P(r|HB) = .10, the posterior
probability of HG is .97. Thus the two situations can lead to different results
in supporting HG .

In summary, Einhorn and Hogarth showed statistical and methodological
shortcomings in their paper. Even though their theory and model can deal with
diagnostic inference which is causal, backward in its direction, and concerned
with specific cases, it is not correct to state that statistical models cannot deal
with similar situations. In fact, they mispercieved the problem with which they
were dealing and did not use the appropriate statistical procedure in interpreting
the problem. The problems on which they were working are essentially Bayesian
problems with incomplete information. Although their model fits the data well,
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it does not mean that their model is good or correct. To improve in methodology,
it would be better to compare several, at least two, models at the same time and
to see which one is better.
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