TWO-PHASE SEMI-ASYNCHRONOUS PARALLEL
ITERATIVE METHODS FOR THE SYMMETRIC
LINEAR COMPLEMENTARITY PROBLEMS

Jiann-Min Yang and Tai-Sheng Chang
% o7& R w O AE™
wm =R

fEACH RMIR M T — 7R A R HAR A B R B
{5 AT SR o Mok ok MR P AT 4 A — i A 30 T P 1R B0 P B
o fEH—FEEBT RFGET R SRS ET > R Baw 2 R AR
TEE R R L RS R R 2 M BERRF L B eBs
(ETH R 5 Ti7ES — BB BT b » JRMTEEHAT— IR A AR
HEE o T AR MR T B (e Rl AR L TR TURURA > B
RO T RO 5 T EL R R AL E R B RS ST
BOO RH B R, HLER T AR T KRR EE o F RAE HE LA MY I B
b o RS AUR G R B AT — fss R > BIAT (R AR R
IR MO RCRI AR TR LAY A o SRR CEIBM. 3090K)
HeSR - HOBEERAT o BTSSR 0 — R il YOS T 2 AR AR TLAS
P EE 5 LIRS RAREDR U R — S F M T ATRAE -

ABSTRACT

In this paper, we propose a two-phase semi-asynchronous parallel iterative
method for solving the symmetric linear complementarity problem. The solution
process is divided into Ist-phase and 2nd-phase alternatingly. In the Ist-phase, we
allow the process to be completely asynchronous. That is. the computation for new
iterate on separate processors and communication in between them could be absolutely
free and chaotic. We impose essentially no restrictions on the ordering and
the number of times of such iterate updating and information exchanging
among processors. In the 2nd-phase. we simply perform a line search.
The method dramatically reduces the overhead arising from synchronization
and communication. Morcover, the process has always used and taken
advantage of the most recent information available, when updating the iterate.
Convergence of the overall scheme is established under a mild restriction on the

*E ISR SR RTEY A
*RE 3 s K ERARE R
AR AL B A & 213 48 (NSC 78-0408-E004-01) - 4Fstikt o

— 595 —

The Journal of National Chengchi University Vol. 65, 1992

range of the line search. The method is simulated and implemented on the 1BM
3090 machine for solving the symmetric lincar complementarity problem arising
from the constrained convex quadratic program. Numerical results are also
reported.

1. Introduction.

In this paper, we propose a two-phase semi-asynchronous iterative method for
the symmetric linear complementarity problem (LCP) which is to find an x ¢ R"
such that

w =g + Mx = 0, x = 0, and wx = 0 (1.1)

where q is a given n-vector and M is a given nxn real symmetric matrix.

The iterative solution for the above LCP(1.1) is a fundamental research arca
and has been studied for many years. Variant methods have been proposed. Motivated
by the arrival for the new generation super and parallel computers which provide
extremely powerful computing capability for the solution of very large-scale scientific
problems. We focus our study on the parallel iterative methods for solving the
LCP(1.1).

The idea of the parallel methods is to share work by using multiple
processors and then to coordinate them via communication links (See Kung
[1976]). One way to achicve the parallel iterative solutions for the LCP(L. 1)
is to decompose problem LCP(1.1) into several subproblems cach of which can
be assigned to a separate processor and then be solved independently. During
the solution process. the processors need to be synchronized and then communicate
to cach other in each iteration. The problem LCP(1.1) will be solved by repeating
the above process iteratively until some termination criteria have been reached (sce
Pang and Yang [1988a], [1988b]).

The above mentioned parallel iterative methods for the LCP(1.1) are
synchronized algorithms. For synchronization. we mean that all the processors have
to adjust their paces at some time spochs for exchanging information and then
restart. Since the time needed for cach processor to accomplish its assigned work
might be different (see Kung [1976]). all the faster processors have to wait and
sit idle there until the slowest processor having completed its assignment. Therefore.
the overhcad produced by the idling processors will typically downgrade the
performance of such algorithms.

— 596 —

Semi-Asynchronous Parallel Methods for LCP

One way to reduce such overhead is to develop the asynchronous algorithms
(see Pang and Yang [1988b]). In most asynchronous algorithms, there exist a set
of global variables which hold the most recent iterates. Whenever a processor has
completed its work, it can exchange some information by reading and updating some
global variables, and then, enters into the next iteration without waiting for other
processors. Since no synchronization is needed. there exists no idling cost arising
from waiting for communication.

However, we should remark here that as far as we are concerned, asynchronous
methods were applied only for very restrictive problem domain. In fact, the only
known asynchronous algorithms available for solving complementarity problems need
the problem having some ‘‘nice’’ properties on the structure of input matrix M.
e.g.. M is a diagonally dominant or a Minkowski matrix (see Pang and Yang
[1988b)).

The issue of how to exploit the benefits of asynchronous computing without
reducing the domain of applications is very important. Therefore, we develop a semi-
asynchronous algorithm for solving the LCP(1.1). We take the advantage of both
the synchronized and asynchronous computing. In one hand, we eliminate most of
the synchronized overhead by using the asynchronous computing through out almost
the whole solution process. On the other hand. we introduce a very little synchronized
step of performing a line search in order to preserve the domain of applications.
Nevertheless, the line search step itself could improve the overall performance of
the algorithm.

The rest of this paper is organized as the follows. In next section, we describe
the semi-asynchronous iterative methods in detail. In section 3. we establish the
convergence of the iterative scheme. In section 4. we report the numerical results
and computational experiences. And in last section. we give some conclusion remarks
and discuss some related future studies.

2. A Two-Phase Semi-Asynchronous Algorithm.
A great variety of iterative methods have been proposed to solve the LCP(1.1).
Many of them can be described as the matrix splitting scheme addressed in Pang

[1982]. We begin the description by letting

M =B + C,

— 597 —

The Journal of National Chengchi University Vol. 65, 1992

that is we split the matrix M into two matrices B and C with the same order as

M. Then we generate a sequence {x*} by the following way. Given x*, let x**!
be a solution to the following LCP:
wh = q + Cx* + Bx = 0, x =0, and x'wk =0 2.1

The general iterative scheme described above can be easily specialized to achieve
the parallel computation. For instance, choosing B to be a block diagonal matrix
will reach the decomposition of the LCP(2.1) into several smaller independant

subproblems. Indeed. let
B = (B

be a partition of the matrix B into submatrices B, with cach diagonal submatrix
B, being square. Then ecach subproblem decomposed from LCP(2.1) can be
specified as the following:

Therefore, the computation for each x; can be assigned to separate processors.

However, we need to synchronize the above processes in each itcration in order

h*1 The extra overhead resulting from synchronization will

to get the full iterate x
typically downgrade the performance of the algorithms.

Now. we begin to describe our two-phase semi-asynchronous method and show
how to reduce such synchronization overhead by using asynchronous computing on
parallel processors.

The solution process of the two-phase semi-asynchronous method is divided
into Ist- and 2nd-phasc alternatingly. In cach Ist-phase. the computation and
communication for the components of x-variable are allowed to be completely free
and choatic. While in the 2nd-phase, one line search step and one simple LCP
iteration are performed. We call the process an outer iteration when it has completed
one lIst-phase and one 2nd-phase.

In each outer iteration k. the Ist-phase is divided into many time points,
t=1 2. ro.... each of which represents the time when one or more processors
having just finished their computation and being rcady for further updating. The
updating process of x-components is achieved by the following formula:

— 598 —

Semi-Asynchronous Parallel Methods for LCP

ie J&r (2.3)

where (1) a = (b), if and only if a = max {0, b}.

2) biik is the (i, i) entry of the diagonal matrix B*,
b* # 0 for all i

¢.X is the (i, j) entry of the matrix Ck and B*¥ + C* = M.

(3) q, is the i-th component of the vector q.

4) ot = (xl“*r,...,xn“*r)l where x* is the i-th component of x at

time point r.

(5) &7 indicates the index set of x-components x, which are ready to
update at time point r, that is 1 € Jhr

In cach time point r, we catch a new iterate XM

The Ist-phase can be terminated at arbitrary time point t. Let { = « and
x be the final iterate of the Ist-phase in outer iteration k.

Remark: Notice that the above updating process is under the assumption of
having no restrictions on the number of processors. If the number
of processors is predetermined, and when the number of processors
available is less than the number of components ready for the
updating at some time point r, then we can arbitrarily choose a subset
of I8 to work on.

After completing the Ist-phase, the 2nd-phase follows. The tasks in the 2nd-
phase are to perform a line search step and to update each x-component once.

— 599 —

The Journal of National Chengehi University Vol 65, 1992

The line search step is described as follows: Given a start point x* and a direction
db = (xke - x") in each iteration k. find x’™ such that:

JxM = fk + adh = omin Lhh 4 dh) 1 xE + adh 2 0}

k <
M= N (2.4

where N\, * is the optimal stepsize.

Remark: The direction d* may be arbitrarily chosen. Intuitively, we believe that

db = (x* — x%) is a good direction since xh

S

is typically a ““better™

iterate compared with x*. (See the numerical results in section 4.)

One way to update each x-component once is by performing the formula (2.3). with
ut" replaced by x'* and (B, C) being a regular splitting of M (i.c.. (B — C) is
positive definite.). Let x* ™! be such an updated iteratc. One can find that x**'
actually satisties the following LCP:

v=q+C"+ B =20 x=0 and «xv =20

where (B'*, C'%) is a regular splitting of the matrix M.

Moreover, the components which have been updated may directly enter into the
Ist-phase of next outer iteration. Thus, we can actually combine this updating process
with asynchronous computation of next outer iteration and generate more degree
of parallelism.

In addition, if there exists communication memory for each processor, then
the communication can be proceed concurrently with computation. As a result, the
process will reduce the communication cost and the overall processing time.

3. Convergence Theorem.

In this section. we establish the convergency of the two-phase semi-asynchronous
iterative algorithm mentioned in the previous section.

-~ 600 —

Semi-Asynchronous Parallel Methods for LCP
Lemma 3.1

Let M is a symmetric nxXn matrix, B’* and C'* are the same defined as in
(2.5}, ic. (B + C'" = M and (B'* — C'Yy s positive definite (p.d.)

If x* is obtained by (2.4) and x**! is obtained by (2.5)
then
(@) f*T) = f(x®y for all k and
by fx* " < f(x%) for all k,
where f(x) = ¢'x + x'Mx/2
pf:
(a) fO0%) — foxh
= (g + MxFxh=xkrh o (xR gk M xh — gk 1/
— (g + CMRHBEREH) xh okt
4+ (B BrRRK) xrk gk
— (xR IM K = xE T2
= (q + C™N+B MYy (3.1
+ (M =X EH)IRBR - My(xk = xk)2
z (X =xM)BT - My(x'K = Xk /2 (3.2)
= (XM —xFTHUBR (k- xk 2
= (x’K—xkT)UBK Ry xR = xk 1y
=0 (3.3)

where (3.1) holds for x* ! being the solution of (2.5),
(3.2) holds for both (g + C™*x'* + B’***!l and x'* are
nonnegative.
(3.3) holds because we suppose B* — C'* is p.d.

— 601 —

The Journal of National Chengchi University Vol. 65. 1992

(b) It is trivial since f(x**") = f(x'® and f(x’%) =< f(x* by (2.4

Lemma 3.2

Let f, x’* and x**! be defined as in the lemma 3.1. If the sequence {f(x")}
converges then

hx® — x*h — 0as k - oo (3.4)
Pf: Since {f(x*)} converges and by lemma 3.1, we have
fx*) — fx*hH — 0 as k - o
By lemma 3.1 (a) and (2.4) we have
fodth < f(x'M = f(x), for all k.
So,
fx™ — fx**h -0 as k - o
Moreover, the proof of lemma 3.1 shows
f(x™) — fx**Y = xF=xktHhyB -CH ' =xkth2 = 0.
Thus,

Ix® — xk*tp, — 0 as k - o.

Lemma 3.3
Let x**! be the same defined as in lemma 3.1 and x'* be obtained by (2.4)
with stepsize I\, | bounded by g/lIx** — x¥ll, where g = 0 for all k and lim

g =0

— 602 —

Semi-Asynchronous Parallel Methods for LCP

then
Hx'k — xMl — 0 as k — oo.
pf.: b= %k o+)\k*(xk“' - x5
P I D W I | P A |
< Mxh = xR g /xR =
= g — 0 as kK — o
and Nx’* — xK = 0 for all k
SO
nx* — xMl— 0 as k — oo

Theorem 3.4

Let M be a symmetric and copositive matrix (that is, xMx = 0 for all
x = 0) and each (B’*., C'*). k = 1, 2, . . . be a regular splitting of M.
Let x'* and x* 7! be as the same defined in lemma 3.3.

Then
(1) the sequence {f(x")} converges. Where f(xY) = q'x + x'Mx/2.
(2) Any accumulation point x* of {x*} is a solution to the LCP (l.1).

Pf: (1) By lemma 3.1 (b). we have
fx*h = ik
Since M is symmetric and copositive,
f(x) is bounded below for x = 0 (see Eaves [1971]).

Thus, {f(x})} converges.

— 603 —

The Journal of National Chengchi University Vol. 65. 1992

(2) By lemma 3.2 and lemma 3.3, we have the results

Hx't — x**1p -~ 0. as k — oo and
Hx* — x5 = 0 as k — oo
further,
0 < Ix*=x*"M < IxM=xM + Ux™ =X = 0 as k — oo
then
Hxk=x* 1 = 0 as kK — oo,

Let {x"*'} be a subsequence converging to x* for cach k.
we have:
u=gq + ChxM+B N = 0 XM > 0 oand uxh ! = 0

(3.4)

passing the limit k, — o and using (3.4) as well as the fact that

xS X% then we conclude that x* solves the LCP(1.1).

Notice that the theorem 3.4 above does not provide the existence of the
accumulation point of the sequence {xl‘}. We give two approaches to quarantee that
{x*} is bounded and thus has at least onc accumulation point. This is referred to
the proposition 2 in Pang and Yang [1988b]. We modify and restate the proposition
as following.

Proposition 3.5

Let M be as given in theorem 3.4, if either

(a) the homogeneous linear complementarity problem
X =2 0, Mx =z 0 and xXMx = 0
has zero as the unique solution:

or

— 604 —

Semi-Asynchronous Parallel Methods tor LCP
(b) the level set {x = 0: f(x) = f(x")} is bounded

then the sequence {x*} generated by the two-phase semi-asynchronous
algorithm decribed in the previous section is bounded for x = 0.

Corollary 3.6

If M is positive definite the condition (a) in the proposition (3.5) holds.

The next result shows that the existence of the regular splittings of any real
symmetric matrix M is quaranteed.

Proposition 3.7
Let M be a real symmetric matrix partitioned into blocks as M = (M) with
cach diagonal block M, being square.

It we let B = A X Diag (M”) + k X Tand C = M — B where k and
N are scalars, Diag(M)) is the block diagonal matrix with each diagonal block being

M. and 1 is an nxn identity matrix.

Then
the (B.C) is a regular splitting of M provided
VX B+ k> y/2

where v is the spectral radius of M and

B is the smallest among the eigenvalues of the diagonal
blocks M.

The proposition 3.6 is easy to be verified. We note that the condition
AN X B + k > /2 holds for every real symmetric matrix M. since k can be
arbitrarily chosen.

Combining theorem 3.4 with proposition 3.5. we may state the following
convergence result for the semi-asynchronous method.

— 605 —

The Journal of National Chengchi University Vol. 65. 1992
Corollary 3.8

Let M satisty the assumption in theorem 3.4 and either condition (a) or (b)
in proposition 3.5 holds. Then the sequence {x*} gencrated by the semi-
asynchronous method converges to the solution of the LCP(1.1).

It suffices to note that if M is positive definite, then the conditions required
in theorem 3.4 and the condition (a) in proposition 3.5 are satistied.

In the case of M being positive semi-definite, we give another way to quarantee
the boundness of the sequence {x"}. We note that B is positive definite if (B, C)
is a regular splitting of M. Therefore, each subproblem (2.1) has a solution,
according to the condition (a) in proposition 3.5. A matrix B such that cach
subproblem (2.1) has a solution is referred to as a Q-matrix in the terminology
of linear complementarity theory (see Pang [1979]). A splitting (B. C) with B being
a Q-matrix is called a Q-splitting. We then begin to restate the theorem. addressed
in Lin and Pang [1987], as following:

Theorem 3.9

Let M be a symmetric positive semi-definitc matrix and (B. C) be a regular
Q-splitting of M. If there exists a vector x such that

q + Mx > 0. (3.5)

Then for any x" = 0, the sequence {x*} generated by the semi-asynchronous
method is bounded, and thus has an accumulation point.

We note that if M and (B, C) satisty the theorem 3.9 and the constraint (3.5)
holds for some x then the sequence {xk} generated by the semi-asynchronous
method converges to the solution of LCP(1.1).

4. Implementation.
In this section, we report the numerical results simulated and implemented on
the IBM 3090 vector computer system.

We assume the problem to be solved is following:

— 606 —

Semi-Asynchronous Parallel Mecthods for LCP

Minimize p'x + x'x/2 subject to Ax = b and Cx = d 4.1)

where p i1s a given n-vector,
b and d are given m-vectors and
A and C are given mXn matrices.

By the Karush-Kuhn-Tucker optimality conditions, we can easily transform problem
(4.1) to the following equivalent LCP:

w = —-b — Ap + AA'u + ACv = 0, u = 0, u'w = 0 (4.2a)

~-d — Cp + CAw + CCl

li
o

(4.2b)

If there exist u and v satisfying (4.2), then the solution to (4.1) is
x = — (p — Au — Clv).

We note that the problem (4.2) is indeed the *‘mixed’’ LCP (see Lin and Pang
[1987]), which is a special case of LCP, if we take the matrix M and the vector
q to be

M = [AAY AC and q = [—b — Ap | respectively.

CA' cC —d = Cp

Notice that M herein is symmetric and positive semi-definite (i.c., xMx = 0 for
all x). We can apply the semi-asynchronous method on this problem if M is chosen
to satisty some slater constraints. (see Theorem 3.9)

Since the structure of M and ¢ provides a natural decomposition, it becomes
obvious for one to divide the problem (4.2) into two groups. (4.2a) and (4.2b).
Nevertheless, the process of further decomposition of the problem can be easily
accomplished by just partitioning the Matrix M into many smaller submatrices.

In order to understand the performance of synchronized and asynchronous
computing, we simulate and implement the algorithms proposed by Mangasarian and
De Leone [1986b], Pang and Yang [1987a] and our two-phase semi-asynchronous
algorithm from the viewpoint of two-stage (see Pang and Yang [1987a]). The

— 607 —

The Journal of National Chengchi University Vol. 65. 1992

first method (namely, the M-D mecthod) performs one inner iteration in each
outer iteration. The second method (namely, P-Y method) performs a number
of inner iterations in each outer iteration (see Pang and Yang [1987a]). Both
the two methods are synchronized and communicate at the end of each outer
iteration. However, our semi-asynchronous method (namely. the Y-C method),
performs asynchronous computing and exchanges information during cach outer
iteration. Since both of the M-D method and the semi-asynchronous method contain
a line search step at the end of each outer iteration, the line search step is
added in the P-Y method for the sake of comparison.

We describe the simulation for the synchronized parallel computation of
the M-D method and the P-Y method by illustrating the computation in the
outer iteration k. We solve the mixed LCP(4.2a) and (4.2b) respectively to
obtain new iterates u® and v*. Therefore. the time for parallelly updating u
and v is estimated to MAX(Tu, Tv), where Tu and Tv are the wall clock
time for updating u and v respectively.

We then describe the simulation of the asynchronous computation in the
Ist-phase of Y-C method. In the beginning, we perform both one update-u and
update-v processes. We record Tu and Tv, the time needed for updating
u and v respectively. If Tu > Tv, we will perform the update-v process
K

next. Instead of using u®, we use time amount Tv to regenerate a partially

updated u* in the next update-v process. The simulation process in the case
of (Tu < Tv) is similar. Repeat the process until some termination criteria
have been reached.

In the cases of our implementation, the values of vectors p and d and
the entries of the matrices A and C are generated by a random number generating
subroutine. The problem size is determined by the row number m. the column
number n and the density of the matrices A and C (the density of a matrix is
the percentage of nonzero entries in the matrix). We run examples of four
classes ((m,n) = (40,500), (80,500), (80.750) and (90,750)). Each class has
four different matrix densities (d =5%. 8%. 11% and 14%). The results are
summarized in TABLE I and TABLE II. TABLE 1 lists the results of the
above mentioned three parallel algorithms. One can find out that the semi-
asynchronous method has better performance and is at least 15% faster than
the other two synchronized methods. TABLE II lists the speed-up values of
the P-Y method and semi-asynchronous method. The speed-up is defined as
follow:

— 608 —

Semi-Asynchronous Parallel Methods for LCP

TABLE I: The results of three parallel algorithms

problem | matrix M-D Method P-Y Method Y-C Method
size | density | 4ol | CPU time | iter. | CPU time| iter. |CPU time

5% | 114 1104 21 353 15 271

m=40 | 8% | 104 1492 23 564 18 472

n=500 11% | 85 1666 2 733 17 590

4% | 110 2734 20 847 16 704

5% | 151% | 2876 36 1175 27 930

m=80 | 8% | 151% | 4406 33 1646 26 1365

n=500 | 1% | 151% | 5943 35 2344 27 1898

14% | 151% | 7374 38 3147 29 2517

5% | 151% | 4195 25 1212 17 899

m=80 | 8% | I151* | 6491 28 2086 18 1477

n=750 11% | 151% 8634 28 2777 18 1951

14% | 151 | 10834 26 3241 20 2677

5% | 151% | 4686 28 1497 21 1201

m=90 8% | 151* | 7191 29 2373 19 1697

n=750 11% | 151% | 9720 29 3196 20 2377
14% | 1s1* | 12170 28 3885 20 2992 |

Remark: (1) The CPU times reported are in 1/1000 seconds.
() The Column “‘iter’’ reports the number of the outer iteration.
(3) ***" indicates the test problem reaches the maximum number of outer iteration.

— 609 —

The Journal of National Chengchi University Vol. 65. 1992

TABLE II: The speed-up values

problem | matrix sequential P-Y Method Y-C Method
size density iter. | time | iter. | time | speed-up | iter. | time | speed-up
5% 21 676 | 21 353 1.915 15 271 2.494
m=40 8% 23 11079 | 23 564 l..9l3 18 472 1 2.286
n=500 11 % 22 | 1421 22 733 1.939 17 590 | 2.408
14% 20 11643 20 847 1.940 16 704 | 2.301
5% 36 2237 36 | 1175 1.904 27 930 | 2.405
m=80 8% 33 | 3207 | 33 | 1646 1.948 26 | 1365 | 2.349
n=500 11% 35 14595 | 35 2344 1.960 27 11898] 2.421
14% 38 | 6183 | 38 | 3147 1.965 29 12517 | 2.456
5% 25 12348 | 25 | 1212 1.937 17 899 | 2.612
m=80 8% 28 14103 | 28 |2086 1.967 18 | 1477 | 2.778 ‘
n=750 11% 28 [5455 28 | 2777 1.964 18 | 1951 2.796 T
14% 26 | 6415 26 | 3241 1.979 20 | 2677] 2.396
5% 28 12915 | 28 | 1497 1.947 21 1201+ 2.420
m=90 8% 29 14686 | 29 |2373 1.975 19 | 1697 | 2.761
n=750 11% 29 16271 29 | 3196 1.962 20 | 23771 2.638
14 % 28 | 7676 1 28 | 3885 1.976 20 12992 | 2.566
Remark: (1) The CPU times reported are in 1/1000 seconds.

(2)
(3)

The Column ‘‘iter™
The sequential method is the sequential version of the P-Y method.

— 610 —

reports the number of the outer iteration.

Scmi-Asynchronous Parallel Mcthods for LCP

TCPU(S)
speed-up =
TCPU(P)
where TCPU(P) is the execution time of the parallel algorithm.
TCPU(S) is the execution time of the sequential algorithm.

Note that the speed-up of semi-asynchronous method are greater than 2 in most
cases. We believe that such superior performance is obtained not only by parallel
computation but also by fast convergence through asynchronous computing. Note
that the number of outer iteration is quite less than that of the synchronized methods.
As a result. the semi-asynchronous method does less work and converges faster
than the other two synchronized methods do. This is the reason why the speed-up
of semi-asynchronous method is larger than 2. in most cases.

5. Extensions.

The arrival of new generation super and parallel computers motivated the
development of many parallel iterative methods for solving the LCP. People intend
to exploit the parallel and the high-speed computation capability of the new generation
computers. In this paper. we develop the two-phase semi-asynchronous iterative
method for the LCP(1.1). It is worthy to extend our method to solve the
nonsymmetric LCP using the similar ideas.

In addition, it is quite meaningful for one to implement the semi-asynchronous
algorithm on real super and parallel machines in order to know the exact behavior
of this agorithm. Therefore, we are now engaged in establishing the parallel
computing environment with Transputers (see May and Shepherd [1987]). The
numerical results and performance of implementing semi-asynchromous method on

Transputer would be soon reported.

References

[1] B. C Eaves [1971]. ~On Quadratic Programming’’, Management Science 17,
pp. 698-711.

[2] H. T Kung [1976]. **Synchronized and Asynchronous Parallel Algorithms for
Multiprocessors™. in J. F. Traub ed.. Algorithms and Complexiry: New Directions
and Recent Results (Academic Press) pp. 153-200.

— 611 —

[3]

[4]

[5]

[6]

(7]

(8]

[10]

The Journal of National Chengchi University Vol. 65, 1992

Y. Y. Lin and J. S. Pang [1987], “‘lterative Methods for Large Convex
Quadratic Programs: A Survey', SIAM Journal on Control and Optimization
25, pp. 383-411.

O. L. Mangasarian and R. Dec Leone [1986a]. ‘Parallel Successive
Overrelaxation Methods for Symmetric Linecar Complementarity Problems and
Linear Programs’’, Mathematics Research Center Report #2947, University of
Wisconsin (Madison, Wisconsin).

O. L. Mangasarian and R. De Leone [1986b]. **Parallel Gradient Projection
Successive Over-relaxation for Symmetric Linear Complementarity Problems
and Linear Programs’’, Technical Report #659. Department of Computer
Sciences, University of Wisconsin (Madison, Wisconsin).

D. May and R. Shepherd [1987], **The Inmos Transputer’’, Invited Paper on
Parallel Processing, State of Art Report 15:4, C. Jesshope, R.J. O'Gorman
and J.M. Stewart eds., Pergarmon Infotech. 1987,

J. S, Pang [1979], **On Q-matrices™", Mathematical Programming 17 (1979),
pp. 243-247.

J. S. Pang [1982], “*On the Convergence of a Basic lterative Method for the
Implicit Complementarity Problem™, Journal of Optimization Theory and
Applications 37, pp. 149-162.

J. S, Pang and J. M. Yang [1988a], ‘*‘Two-stage Parallel Iterative Methods
for the Symmetric Linear Complementarity Problem,” Annals of Operations
Research: Parallel Optimization on Novel Computer Architectures 14, pp.
61-75.

J. S. Pang and J. M. Yang [1988b], "‘Parallel Newton Methods for the
Nonlinear Complementarity Problem™ . Mathematical Programming: Parallel
Methods in Mathematical Programming 42 No. 2, pp. 407-420.

— 612 —

