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AN APPROACH TO THE INCREASE OF THE PERFORMANCE OF
VLSI SYSTEM BY IMPLEMENTING SYSTOLIC ARRAY
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ABSTRACT

A systolic system is a network of processors which rhythmically compute and
pass data through the system. Many basic matrix computations can be pipelined
efficiently on systolic networks having an array structure. In this paper we are try-
ing to find a better solution for an (n+1) x (n+1) system of linear equations by using
a one-dimensional systolic array. In the algorithms implemented shown that it re-
quires only order(n) time and order (n) storage.

1. Introduction
Systolic array has been used so widely during the recent years in solving differ-
ent problems occured or being found in the VLSI system. Charles E. Leiserson pro-

posed a systolic priority queues in the VLSI circuits, H.T. Kung has designed algo-
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rithms for VLSI chips. Recently Bitmead and Anderson proposed procedures which
require only order (nlog?n) time and order(n) space when applied to order(n+1)
system. We found that these procedures are kind of too complicated and if n is not
really large then its speed would be even slower than the order(n?)-time methods
which has been proposed by Bareiss. In order to find a better solution which can
compete with the previous researches, we have implemented and modified Bareiss
algorithms which have been proved requires only O(n) processors. The results we
have got are quite excited. After the new implementations, we have reduced the
storage requirements from O(n?) down to O(n).

2. Brief Review of the Bariess Algorithm

At the beginning, let us review some of the algorithms developed by Bariess.
Suppose there is a matrix of order(n+1) and, we named it as T which respond to a
column vector B. In short, it is Tx = B,
and after extension, it becomes

ty t, t, - - - - = — — 1, b0
ty t 4 - — = - - = = 1y b,
t, t, t0 - - - - = = = t, bz
. . X =
Lt~n t-n+l L * y : * : R T L bn P

Now, let us take a look at Bariess two examples listed in p. 415 [3].

Example 1.
1 2 3 4 5
2 1 2 3 4
T=120 3 2 1 2 3
4 3 2 1 2
5 4 3 1
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43 Shift « 120
42m, = So--L 120 0
3.3 Shift « 144 | 120 24
- 30 __.1
3.2m, = $0---1L 144 | 120 0 24
2.3 Shift « 180 150 | 120 30 60
= 40 __1
22m, = —395=-% 180 150 | 120 0 30 60
1.3 Shift « 240 200 160 | 120 40 80 120
_ 240 _.2
L2m, = $30=-3 240 200 160 | 120 0 40 80 120
480 360 240 | 120 240 | 360 480 600
600 480 360 | 240 120 | 240 360 480
Lim, = #30 =2 -360 -240 -120 0 -360 | -480 -600 -720
1.3 Shift - -360 -240 |-120 -360 | -480 -600 -720
21m, = 150 - -160 -80 0 -320 |-400 -480
2.3 Shift — -160 | -80 -320 | -400 -480
- -80 __2 . - i,
31m, = 359 =-2 60 0 -300 | -360
3.3 Shift — -60 -300 | -360
_ -60 __1 ]
4.1 m, = 120 = 2 0 288
4.3 Shift — -288
p, P, P, Py p, P, D,
Hence
120 240 360 480 600
-360 -480 -600 -720
T = -320 -400 -480
-300 -360
0 -288
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and
120 0
144 120
T® 180 150 120
240 200 160 120
600 480 360 240 120
Example 2.
30
22
b = 120 18
20
30
42m, =-L 120
-1
32m, = -4 120 384
22m, =-1 240 390 840
12m, =-2 560 560 880 1600
3600 2640 2160 2400
2640 2160 2400 3600
Ilm, =2 -4560 -3120 -1920 - 1200
1.3 Shift « -4560 -3120 -1920 - 1200
20m, = -1 -2560 -1360 -320
2.3 Shift « -2560 - 1360 -320
9)
30m, = -3 -1200 -60
3.3 Shift « -1200 -60
_ .1
41 m__4 bt _2“ O
4.3 Shift « 0
Q, Q Q, Q,
3600
- 4560
b = -2560
-1200
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According to Bareiss algorithm Tx = B can be transformed into T®Vx = BCD Ty =
BW Ty =B T@x =83 . .. Ty =B Ty = BW
and the T®; T™ are upper and lower triangulars respectively.

r J

i rows upper triangular

T('i) =
n+1-i rows, upper triangular
[
n-i rows, i zero diagonals
lower triangular
n-i rows, upper triangular
TO =

i zero diagonals

. 4
~ —

v
lower triangular
top n+l-i rows
bottom i rows

Figure 1. Structure of T) and T® in the Bareiss algorithm

We introduce the shift matrices
Z;= (ij(_l)) 8ik-i

. )y =

Z, = (Zy") = 8 ki

The effect of premultiplication by Z_, is to downshift the matrix TG by §
rows and to replace its first i rows by zeros. Similarly, Z; upshifts TCD by i rows
and replaces its last i rows by zeros. Suppose that the matrix T has (i-1) null
subdiagonals. The following equations show that it will wipe the i-th subdiagonal

out without disturbing those already null elements. It follows that the matrix T
will be upper triangular.

t(il(-)i)

to
. . . t(i-l)
T = TED - @ Z T with m, = —&&
=i i tﬁ,‘%

TED = TEHD -y 7 T, with m
-i - ’ -1
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BGi) = RGi+D) m-iZ~iB(i_U
B = pG-h _ miZiB(_i)

The Bareiss method will not fail as long as all the leading principal submatrices
of the given matrix T are nonsingular. An LU-factorization, with L unit lower
triangular, of T is then given.

Where T = LU
t_lo_(T(n))TZ
U= Ttm

3. New Approach for the Solution

We present here a one-dimensional systolic array for computing the two trian-
gular matices T and T™. The array consists of 2n-1 processors P Pyt
P_l, PO, Pl, C, Pn_l, arranged from left to right. All processors are identical except
for the middle one P For simplicity we first assume that P can broadcast a scalar
quantity to all other processors in constant time. This assumption will soon be
dropped. The processor P, has four registers U,. U D0 , and D,,, and each re-
maining processor P (k not equals to 0) has two reglsters U and D We denote
the content of register R by [R]. Each processor has two output ]mes outu, and
outdk, and two input lines muk and md The output line outu, is connected to
k1> tor k=1,2,...n- 1. The output line outd_k is connected to
the input line ind_kﬂ, fork=1,2,....n-1.

the input line inu

outu3 outu2 outul inu0 inul inu2 inu3

'_U_B] U2 Ul
@ D2 __121] D2
! !

outd3 outd?2 outd] outd0 outdl outd? outd3

Bl

B

m

&

Figure 2. The processor array for n = 4
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Before iterating, we feed data into the array so that

Dol =t [Doe 1 = 1
and
(D] =ty (D] =t
for k=1,2..... , n~1, we now consider one iteration, say the i-th one. Each itera-

tion consists of three steps. At step one the processor P, computes the multiplier

[D,_]
_ D,
M- T 10,0

This value is broadcast to all processors. Processor P, , all k, now computes
() = (D, 1- m U]

The quantity Dk, for k<10 is output on line out, , and the register Uk receives
the value of (ii). At the third st :p, we do data transfer. The content of register D, ,
for k-1, is sent to processor P, , on line outd, . The incoming data for P, ,, is
stored in register D, ;.
content of register U, for k== 1 is sent to processor Pk_1 , on line outu, . The incom-
ing data for P, , is stored in register U, , and the content of register U, is lost. We
now disable processors P_ ., and P This completes one iteration of the Bareiss.
algorithm,

Since we disable the two end processors after each iteration, our method must
terminate after n iterations. Let us denote the output on line outd, at the i-th itera-
tion by df(i) and the corresponding output on outu, by ul((i). The two desired ma-
trices T and T® are given by

The content of register Do- is lost. At the same time, the

ty t;, t, ty o+t g
i 1 1

4 af afP- - - d{y

2 2 2

a@ @ - a

™ = d?) . . . ds_):’ and

0 | ap
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(n)
U,

(n-1) (n-1)
U Uy

(n-2) (n-2) n-2)
uy,™ ug

™ = . . . .
1 1 1 M
u-(n-)n u-(nlz i ufn-)i-s * * * ¢ u0
t—n t—n+1 t—I'l‘l'2 t 1 t 0

By transforming the right-hand vector B simultaneously (we will discuss it
later). We obtain an upper triangular system Ty = B solve. So T™ can be
discarded. The Bareiss algorithm appears to require order (n?) storage. However,
at the éxpense of some extra computation, we can avoid using more than order(n)
storage (the details are presented in the later part of this section too).

We show now that broadcasting is not needed if each processor P, (resp. P,),
k > 0, can pass a scalar quantity to its outer neighbor Pk + (resp. P_k_l) and if P,
can pass a number to both P, and P_. Let us describe how the i-th iteration (say)
proceeds. The middle processor P, reads the inputs on lines inu, and ind,, and
stores the numbers in registers U,, and D,., respectively. The computing starts
with P, calculating the multiplier m_; and passes the value to its two neighbors P_1
and P,. The processor P, now performs the second step of the jteration by com-
puting the multiplier m, and again passes its value to processors P_1 and Pl. The
processor Pl (resp. P_1 ), on receiving m_, will do the computation and pass the
multiplier to the neighbor P, (resp. P_,). Then P, (resp. P_ ) will receive the mul-
tiplier m,. The operations are now performed and the value of m, will be passed to
processor P, (resp. P_,). The processor P, (resp. P_,) completes its share of the
iteration by sending the content of register U, (resp. D_,) leftward (resp. rightward)
to processor P,. The processors P, and P_, on receiving the multipliers m_; and
then m,, will perform the necessary computations, the passing on of the multipliers
and finally the shifting of the necessary information toward the middle processor.

This process expands outward until the two end processors Pn_i and P_n + have
done their tasks, ending the iteration. An important observation here is that the
(i+1)-st iteration can start as soon as processor P, receives the data from its two
neighbors. Our technique for avoiding broadcast is quite common: processors are
active only on alternate time steps (Py, P,, .. .. at time 7= 1,3....and P.,P,,...
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at time 7=2,4...), and the operations of processors P,, are delayed by k time
steps relative to the operation of processor P,. i

Suppose that the given matrix T is banded with half-bandwidth w. We can,
of course, disregard this special structure and still use 2n-1 processors. But as pro-
cessors P, 4y, Py, - - Piqgy Work only with null data, we may perform the eli-
mination using only 2w-3 processors if the input lines inug,_, and ind_,,, always
carry the number zero. We will disable the processors P,; and P_,,; at the end of
the i-th iteration, for i=n-w+2, n~w+3, ... .. n-1.

Now let us look back to Bareiss example 1.

Note that T = LU, where U = T and

1 0
2 1
= 1 (m@®\T2 _ 4
L= 1T = 3 3 1
5 5
4 3 7 1
3 6
5 2 5 2 1

Suppose that we want to find the vector B™ that satisfies T®™x = B then
we have to do the following steps that is what we have mentioned before, modifying
the right-hand vector.

The structure and the operations of the systolic array are very similar to the
right-half of the systolic architecture of the previous section. The array here consists

of the n processors Q,, Q,, ....,Q,,. Al the processors are identical.
UO Ul U2 U3
€ D, D, | [ D, | [ D,
outd, ind,, outd, ind, outd, ind, outd,

Figure 3. Systolic array for finding B™M (n=4)
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Each Qk has two registers Uk and Dk , one output line outdk and one input line
indk. The lines indk and outdkﬂ are connected (for k=0,1,...., n-2). We also
assume temporarily that all processors can receive the broadcast of a scalar quantity.

Before iteration starts, data are fed into the processors so that, fork=0,1, ... .,
n-1,

[Uk] = Bk
[Dk] = Bk+1
where B = (b,, b, ...., bn)T. Let us consider the i-th iteration, where i>1. An

iteration consists of three steps, same as in the previous section. At the first step,
the multiplier m, arrives at processor Qk , which then computes

(i) = (D,]- m,[U,]

and stores (iii) in register Dk. The second step begins when Qk receives the mul-
tiplier m,. It computes

(iv) = [U,] - m,[D, ]

and stores the result in U, . The third step is now initiated. It involves a transfer
of the content of register D, from processor Q, to processor Q> for k>1. The
content of D, isrsent out on outd, and register D, , for k>0, receives the content
of register D,,,- The completion of the data transfer ends the i-th iteration and
processor Qn-i is disabled. If we denote the output on line outd, after the i-th
iteration by ), then the vector B®™ is given by

b
U]
dg
2)
de
B(‘n) = .
a®

Since the algorithms in this and the previous sections are very similar, we can
argue using the same reasonings as before that broadcasting is unnecessary if each
processor Qk can pass the multiplier to its right neighbor Qk + and if the operation
of processor Qy is delayed by k time steps relative to the operation of processor Q,.
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And now let us refer back to Bareiss example 2.

We consider the regeneration of the upper triangular matrix T using only
its last column and the 2n multipliers m .. Our key idea is to run the elimination al-
gorithm in the previous part of this section:

T = 70 4 mz 19,

THD = T 4 ;m,Z TED
-1 -1 3

fori=n, n-1,...., 1. (Observe that rows 0 to i for T are equal to rows 0 to i
of T(")). So our systolic array consists of n identical processors B, B,, . ..., B .
Each processor B, has two registers Uk and D . Initially.

U1 = 0, and

[Dk] = tf:llz,n ’
for k=0,1,...., n-1. We again assume for a moment that there is a broadcasting

mechanism. Each processor B, has two output lines outu, and outd, and one input
line inu,_. The lines outu, and inu,,, are connected, for k= 0.

multiplier
outu, inu, | outu, inu, | outu, inu,
Yo U, =1 V2 Uy
Bo B, B; B,
D, D, D, | Ds

loutdo loutdl ' loutd2 loutd3

Figure 4. A systolic array for generating T (n=4)

Only one processor, By, is active for the initial iteration. At the end of the i-th
iteration, iz 1, processor Bi is activated for subsequent computations so that the
(i+1) processors By, By, . o. ., B, are active during the (i+1)-st iteration. . Each
iteration consists of three steps. Let us describe the i-th iteration. At the first step,
the multiplier m ., is broadcast to all the processors and the following computation
is done:
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v) = (U] + m_.,[D,. 1,

for k=0,1, ... , i-1. The result (v) is stored in register Uk. The second step starts
when the multiplier m_ _,; is broadcast to all processors, Processor Bk 0<k<i-1)
then computes

(vi) = [D,] + m (U1,

-n-1+i

outputs the result (vi) on outd, and also stores the number in register D, . The third
step is put a shifting of the content of register Uk to register Uk+1 , for k=0,_1, ce,
i-1. Register U, will contain the number zero. The complete procedure stops after
n iterations. -
If we denote the output on line outd, at the i-th iteration by d('), the desired
matrix T™ is given by
WA e

-y (1) ¢n)
dO dn-2 tl,n

T('n)

d@  4® e

n-2,n

0 & e

n-1,n
t('n)

n,n

As before, we can argue that broadcasting is unnecessary as long as each pro-
CESSOr can pass a scalar quantity to its right neighbor.

Since our primary concern is the solution of T®™Wx = BE™ 4n 4 linear systolic
array, it is interesting to note that we have regenerated the elements of T ip the

exact order as required by the Kung-Leiserson algorithm for back substitution.

4.3 shift - 0 240 360 480
41 m, = -2 240 350 480 600
3.3 shift - 0 40 80 120
31 m, = -1 40 80 120
2.3 shift » 0 30 60
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_ .l

2.1 m, = -5 30 60

1.3 shift - 0 24
= -1

Ll m, = -5 24

-288 -360 -480 -720

12 m,=-% -300
22 m,=-3 320 -400
32 m,= -1 -360 -480 -600
42 m, =2 120 240 360 480
B, B B, B
We get v
120 240 360 480 600
-360 -480 -600 -720
™ = -320 -400 -480
-300 -360
0 -288

4. A Proposed Model

We can construct one systolic array that solves the given equations Tx=B. Be-
cause of the 51m11ar1t1es in their operations, processors P, and Q, (k> 0) are com-
bined into one super-processor S, (k> 0). We then program S (k= 0) to do the
regeneration of T and the solutlon of T( My =BW  Let us descrlbe our linear

array of n+1 super-processors Sy, S;, .. .. . (The last processor S_ is needed for
the back substitution). In the Bareiss algorlthm four triangular matrlces
[« 01 [ By 31\\ W
o = 0‘1\\ B = \61
L\ o o | O Bo
oy, 0] ER |
Y = 71\ 5 = \51
L \\71 70‘. L 0 60 J
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are updated (see Figure 1). Now each processor S, has registers to store o, By, Yy
and §,. (When describing processor S, we shall omlt the subscripts and 81mply
refer to registers o, 8, ¥ and §.) Processor S requires four additional registers 7\
for a multiplier my, My for a multiplier m 4 and §_and N, Which are assomated
with the right-hand 51de vector B and the solution x.

Data flows in both directions between adjacent processors, as shown in Figure
5. Hence, each processor needs five input and five output data paths denoted by
inLl, inL2, inR1, inR2, inR3, outlLl, outL2, outl3, outR1, and outR2 (see Figure
6). '

Phase 1 (LU decomposition by the Bareiss algorithm)

2\) “’ § xs “
. S S

S RX: Gl — R kel

Phase 2 (Back substitution to solve triangular system)

5, 5,
Ska [ Sy —| S
) Au,m *

Figure 5. Data flow for systolic system solver.

inLl—- ——outR1

inL2—— o B v ) ~——outR2
outLl<—— «<——inR1
outL2«— A M £ n «——inR2
outL3«—— <«——inR3

Figure 6. Systolic processor for systems,
Imtlahzatlon is as follows: o = t-(k+1); B =1t sV =t 8= tk+1; A =0
Ky =0; Ek n_k M =b ek all for0<k<n (we assume that t @) = Yni =b, =

0 to cover end-condltlons). Clearly this can be done in time order(n) if T and B
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Program for processor k at time step 7, 0< k<n, 1<7< 4n

3

7> 2n+k <<4n-k ,

Phase 1-LU Phase 2-back
Factorization Substitution
(see Figure 8) (see Figure 9)

Figure 7. Systolic processor for equation solver.

are available at either end of the systolic array.

We present the program executed by processor S, (O<k<n) at time step
7(1<7<4n) in Figure 7. The final solution x is given by X, =§,, where £ is st’ored
in register ¢ of processor S after step 4n. What follows are some observations con-
cerning the program:

1. Processor Sk is active only if k<7< 2n-k (Phase, 1) or 2n+k <7< 4n-k
(Phase 2). It is assumed that Sk knows its index k and the current value of 7 (though
this could be avoided by the use of 1-bit systolic control paths).

2. Pairs of adjacent processors could be combined. Since only one processor
of each pair is active at each time step. This would increase the mean processor
utilization from 25% to 50% (see observation 1 above).

3. Processor S, performs floating-point divisions, other processor‘s perform
only additions and multiplications. A time step has to be long enough for six
floating-point additions and multiplications, plus data transfers, during ‘Phase 1 (less
during Phase 2).

4. The Bareiss algorithm requires 4+ 5n” multiplications as given, but a simple
modification (transmitting 1+Au) will give time 4n if have [%] processors (see ob-
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r>k+l1 yes
accept inputs from
processor k +1
no
a=inRl1
6 =inR2
£ =inR3
e
no k=0 yes
accept multipliers -
frompprocess%r ksl compute multiplier
A=inL1l
u =inL2 A=a/Y
o= -y
B=p- s
n=n-A*§
no 0 yes
compute multiplier
T=7-U*a
8=08-u*p n=38/8
E=E-u*n

outll =«
outl2 =8
outl3 =&
outRl = A
outR2=p
Figure 8,
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servation 2), each with six multiply-add units. The corresponding figures for the
symmetric Bareiss algorithm for symmetric matrices are 4n> 4n, and 5.

5. An alternative for Phase 2 is the use of the Gohberg-semencul formula. But
the formula is more expensive in terms of both operations and time, and it also fails
to take advantage of the possible band structure of the matrix.

6. Processor Sy typically reads its input lines inLi, . . . ., inR3, does some
floating-point computations, and writes to its output lines outLl, .. .., outR2,
Hence, pairs of input and output lines could be combined into single bidirectional
lines (e.g. inL1 and outL1] could be combined).

no
£ =inLl
8 =inL2 E=n/p
1 =n-Bri 8 =u*p
8 =8+uxp

l

© outL]l =A
outL2 = u} ignore if k=0
outlL3 =1
outR1 =¢§ . .
k =
outR2 = } ignoreif k=0
Figure 9.
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